第二章電阻電路的分析_第1頁
第二章電阻電路的分析_第2頁
第二章電阻電路的分析_第3頁
第二章電阻電路的分析_第4頁
第二章電阻電路的分析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第2章 電阻電路的分析主要內容:Ø 定理法:疊加定理、替代定理、戴維南定理(諾頓定理);Ø 等效變換法:獨立電源的等效變換、電阻的Y-轉換、移源法;Ø 系統(tǒng)化法:節(jié)點電壓法、回路電流法。§2-1 線性電路的性質·疊加定理 (superposition theorem)一、 線性電路的概念由線性元件及獨立電源組成的電路。電源的作用是激勵,其它元件則是對電源的響應。二、 線性電路的性質1、 齊次性: R3R2R1+ |-+ |- 若有圖示的線性電路,在單電源激勵下,以的電流為輸出響應,則容易得到: 由于為常數(shù),故有: + |-R3R2R1+ |-

2、顯然,與成比例。在數(shù)學中,被稱為“齊次性”,而在電路理論中則稱為“比例性”。2、 相加性在圖示的兩激勵電路中,若仍以的電流作為輸出響應,則有: 顯然,由兩項組成,第一項為電壓源單獨作用時,在電阻上引起的響應,每二項為電流源單獨作用時,在電阻上引起的響應,每一項只與某個激勵源成比例。也即,由兩個激勵所產(chǎn)生的響應,表示為每一個激勵單獨作用時產(chǎn)生的響應之和。這在數(shù)學中稱為“相加性”,在電路理論中則稱為“疊加性”。三、 疊加定理在任何線性電阻電路中,每一元件的電流或電壓都是電路中各個獨立電源單獨作用時在該元件產(chǎn)生的電流或電壓的疊加。疊加性是線性電路的一個根本屬性。 注:Ø 疊加定理適用于線性

3、電路。Ø 在疊加的各分電路中,不作用的電壓源置零(即,電壓源用短路代替),不作用的電流源置零(即,電流源用開路代替),電阻不更動,受控源保留在各分電路中。Ø 和分電路中的電壓、電流的參考方向可以取為原電路中的相同方向,求和時,應注意各分量前的“+”、“-”號。Ø 原電路的功率不等于按各分電路計算所得的功率疊加,這是因為功率是電壓和電流的乘積。四、 應用疊加定理的解題步驟1. 根據(jù)已知的電路結構,將電源進行適當?shù)胤纸M,分組的原則是:盡可能使各分電路的計算簡化。2. 將不作用的獨立電源置零:電流源開路,電壓源短路。分別作出各組電源單獨作用時的分電路圖。注意:在各分電路

4、圖中,電阻及受控源應保持原來的位置和關系不變,以及所求支路響應的參考方向盡量與總圖保持一致,這樣可以減少出錯的可能。3. 利用直流穩(wěn)態(tài)響應的求解方法分別求出各分電路中的響應。4. 將所有的分電路的響應進行疊加,得到總電路和響應。注意:在進行疊加時,注意各分響應的參考方向。五、 齊次定理在線性電路中,當所有的激勵(電壓源和電流源)都同時增大或縮小K倍(K為實常數(shù))時,響應(支路電壓和電流)了將同樣增加或縮小K倍。齊次定理的一個典型應用就是求解梯形電路的“倒推法”。§2-2 替代定理(substitution theorem)一、 定義:(置換定理)給定一個線性電阻電路,其中第K條支路電

5、壓uk電流ik已知,且該支路中不含受控源或受控源的控制量,則該支路可用一個電壓等于uk的電壓源或一個電流等于ik的電流源進行替代,電路中全部電壓和電流均將保持原值。替代定理可以推廣到非線性電路。替代定理的正確性是顯而易見的。第K條支路置換前后整個網(wǎng)絡的結構沒有改變,所描述該網(wǎng)絡結構約束關系的KCL及KVL方程保持不,除第K條支路外,支路約束關系也不變,若置換前后網(wǎng)絡的電壓、電流為唯一解,當?shù)贙條支路由is=ik的獨立電流源來確定時,電流源兩端的電壓可為任意值,那么,該支路電壓也就被唯一確定為uk。§2-3 戴維寧定理(Thevenin theorem)一、 戴維南定理:(含源一端口網(wǎng)

6、絡的等效電路)一個含有獨立電源、線性電阻和受控源的一端口,對外電路來說,可以用一個電壓源和電阻的串聯(lián)組合進行等效置換,此電壓源的電壓等于一端口的開路電壓,電阻等于該一端口的全部獨立電源置零后的輸入電阻。這種等效是對外電路而言。也即:若線性含源一端口網(wǎng)絡的端口電壓u和電流i為非關聯(lián)方向(如圖示),則其端口的VCR關系為:含源一端口 R+uoc-+-i u=uoc-Rini其中:uoc:一端口的開路電壓Rin:一端口全部獨立電源置零后的等效電阻。戴維南定理可用疊加定理容易完成。若一端口電壓為零時(u=0),此時的端口電流i稱為短路電流isc,則有:Rin=uoc/isc這對于不知道網(wǎng)絡內部電路結構

7、的情況非常有用。二、 戴維南定理求解步驟:1. 先將待求支路暫時去掉,將剩下的部分視為一個含源一端口。2. 給出端口的開路電壓參考方向,并求出開路電壓uoc。3. 將一端口內部所有的獨立電源置零(電壓源短路,電流源開路)。求輸入電阻Rin。若獨立電源置零后,電路不含有受控源,則輸入電阻可通過電阻的串、并聯(lián)求得;若獨立電源置零后,電路含有受控源,則輸入電阻可通過外施電源法或則用開路電路和短路電流之比來求得。4. 作出戴維南等效電路,加上臨時去掉的支路,求解電路。+10V-1K1K0.5 a+uoc-b例:求圖示電路的戴維南等效電路。解:先求uoc由于ab間開路,故i1=0故有:uoc=10V+1

8、0V-1K1K0.5 isc +10V-1K1K +500-求Rin-10-2000isc+500 isc=0, isc=-1/150A, 故有Rin=1.5K§2-4 諾頓定理(Norton theorem)一、 諾頓定理:一個含有獨立電源、線性電阻和受控源的一端口,對外電路來說,可以用一個電流源和電導的并聯(lián)組合進行等效置換,此電流源的電流等于一端口的短路電流,電導等于該一端口的全部獨立電源置零后的輸入電導。這種等效是對外電路而言。含源一端口 也即:若線性含源一端口網(wǎng)絡的端口電壓u和電流i為非關聯(lián)方向(如圖示),則其端口的VCR關系為:i=isc-Ginu其中:isc:一端口的短路

9、電流Gin:一端口全部獨立電源置零后的等效電導。戴維南定理和諾頓定理所得到等效電路統(tǒng)稱為等效發(fā)電機定理。 注:Ø 并非所有的網(wǎng)絡都能等效為戴維南等效電路或諾頓等效電路。當含源一端口內部含有受控源時,在其內部獨立電源置零后,輸入電阻或戴維南等效電阻有可能為0或無窮大,當Rin=0時,等效電路成為一個電壓源,此時,對應的諾頓等效電路就不存在,反之,戴維南等效電路就不存在。但通常這兩種等效電路都是同時存在的。Ø 它們在以下幾種情況下特別適用:只求某一支路的電流、電壓或電阻;分析某一參數(shù)變動的影響;分析含有非線性元件的電路。二、 最大功率傳遞定理:由線性單口傳遞給可變負載RL的功率

10、為最大的條件是:負載RL應與戴維南或諾頓等效電路相等。Rin+uoc-i RL也即:當時, (戴維南等效) (諾頓等效)證明:要使P為最大,則有:故,當時,§2-5 有伴電源的等效變換一、有伴電源:指有電阻與電壓源的串聯(lián)或者電阻與電流源的并聯(lián)均稱為有伴電源。有伴電源可以視為含源一端口的兩種不同模型,也可以視為實際電源的兩種模型。二、有伴電源的等效變換R+us-+-i G+-i is 串聯(lián)Þ并聯(lián)is=us/R,G=1/R并聯(lián)Ü串聯(lián)us=is/G,R=1/G有伴電源的等效是指端口的電壓、電流在變換過程中保持不變,也即對外等效的概念。 注:Ø 這種等效是對端子

11、而言(外電路而言),即對外電路的電壓、電流和功率等效,而對內部(電源的內部)并不等效。Ø 等效變換的條件是:Ø 等效變換后要注意電壓源電壓的極性及電流源電流的參考方向的關系。Ø 對于有伴受控電源,也可以采用上述類似的方法進行處理,此時,只需將受控源當作獨立電源進行處理,但在變換過程中,特別需要注意的是:應保留控制量所在支路,而不能把它消掉。否則,變換前后對于外電路而言也將不再等效!Ø 無伴電源(理想電源)之間是不能進行等效變換的。Ø 假有伴電源的等效。對于圖示電源,很容易被錯視為有伴電源,注意其差別,它們的等效分別為下圖。圖中元件可以為任何的二

12、端元件,甚至可以為一部分電路。+-i is 元件 +-i is +us-+-i 元件 +us-+-i 例:5Ai 2A437+6V-106A2A+10V-106A+10V-R1+Us-i R2R3+ri-§2-6 星形電阻網(wǎng)絡與三角形電阻網(wǎng)絡的等效變換一、 問題的引入:由電橋電路引出Y形和形連接,這種連接既非串聯(lián),又非并聯(lián)。其特點是通過三個端子與外電路相連。二、 Y-等效轉換:經(jīng)推導,可得Y-等效轉換公式。由Y轉換為: 由轉換為Y: 三、 記憶公式:例1: P38 例2-2例2: 圖示電路,(帶陰影填充的電阻為歐,其余為歐)求解:先將電路圖改畫,然后再計算。ab經(jīng)計算,2*§

13、;2-7 特勒根定理不講。*§2-8 互易定理不講。§2-9 節(jié)點分析法一、 節(jié)點電壓的概念:在電路中任選某一節(jié)點為參考節(jié)點,其它節(jié)點與此參考節(jié)點之間的電壓稱為節(jié)點電壓。二、 什么是節(jié)點電壓法:以節(jié)點電壓為未知量,對獨立節(jié)點用KCL列出節(jié)點電壓表示的有關支路電流方程,聯(lián)立解出各節(jié)點電壓,再由節(jié)點電壓求解各支路電壓和電流,這種方法稱為節(jié)點電壓法。三、 節(jié)點電壓法:(推導見P110)對于具有n個節(jié)點的電路圖,節(jié)點電壓方程的一般形式為:其中:為自導,總為正,等于連接各節(jié)點支路電導之和。為互導,總為負,等于連接兩節(jié)點間的支路電導之和。為節(jié)點的注入電流,注入電流等于流向節(jié)點的電流源的

14、電流代數(shù)和,并且流入節(jié)點為“+”,流出節(jié)點為“-”。四、 節(jié)點電壓法的解題步驟:a) 指定參考節(jié)點,其余各節(jié)點對參考節(jié)點之間的電壓就是節(jié)點電壓,通常參考節(jié)點的選取可以是任意的,但電路中有無伴電壓源時,則需要特殊選擇。b) 按公式寫出節(jié)點電壓方程。注意:自導總為正,互導總為負,并留意節(jié)點注入電流前面的正負號。c) 當電路中有電壓源與電阻的串聯(lián)時,可將其等效變換為電流源和電阻的并聯(lián)組合。若含有無伴電壓源時,則有兩種處理方式:其一是將無伴電壓源的電流作為附加變量列入節(jié)點電壓方程中,同時,增加節(jié)點電壓與無伴電壓源電壓間的約束關系;其二為在選擇參考節(jié)點時,將參考節(jié)點選擇在無伴電壓源的負極,那么,無伴電壓

15、源正所連節(jié)點的電壓即為該電壓源的電壓。d) 當電路中含有受控源時,可按照獨立電源的方式進行相應處理。即若為受控電流源,可將其暫時視為獨立電源列于方程的右邊,然后將其控制量用節(jié)點電壓表示,再將其移到方程的左邊;若為受控電壓源時,可先將其等效變換為受控電流源進行處理,如果為無伴受控電壓源,則可參照無伴電壓源的辦法進行相應處理。e) 列節(jié)點電壓方程時,不需要事先指定支路電流的參考方向,節(jié)點電壓本身已包含了KVL方程,故要檢驗答案的正確與否,就按支路電流用KCL進行檢驗。f) 求解各支路電壓和電流。 注:Ø 當電流源與一個電導(電阻)串聯(lián)時,則節(jié)點電壓方程的自導、互導中為應不含有該電導(電阻

16、)。(這主要是因為已在方程右邊計入了該支路電流)Ø 當某條支路為兩個電阻(R1,R2)串聯(lián)時,則該要注意該支路的電導的正確表達式。§2-10 回路分析法一、 什么是回路電流法:(由網(wǎng)孔法引入)以回路電流為未知量,根據(jù)KVL對所有基本回路(獨立回路)列出方程,這組方程將是獨立的,再由回路電流求解各支路電流,這種方法稱為回路電流法?;芈贩ㄟm用于平面圖和非平面圖。二、 回路電流法:(推導見P139)對于具有l(wèi)個獨立回路的電路圖,回路電流方程的一般形式為:其中:為自阻,0為互阻,在回路電流均為同向時,0為回路的總電壓源電壓,當各電壓源的方向與回路電流一致時,前取“-”。三、 回路電

17、流法的解題步驟:1. 根據(jù)給定電路通過選擇一顆樹確定一組基本回路,以各回路的連支電流方向為回路繞行方向。2. 對每一單連支回路列寫回路電流方程(以回路電流方向為回路繞行方向),在回路電流方向一致時,自阻總大于零,互阻總小于零,方程右邊的電壓則是回路的總電壓源電壓,各電壓源方向與回路電流一致時,取“-”號,反之,取“+”號。3. 當電路中有電流源與電阻的并聯(lián)時,可將其等效變換為電壓源和電阻的串聯(lián)組合。若含有無伴電流源時,則需進行特殊處理,即:當僅有一個回路電流流過該電流源時,則回路電流即等于該電流源電流;而當多個回路電流流過該電流源時,則應將電流源兩端的電壓作為未知量引入方程中,同時補充回路電流與電流源電流的約束關系方程。4. 當電路中含有受控源時,則:若為受控電壓源,可將其暫時視為獨立電源列于方程的邊,然后將其控制量用回路電流表示,再將其移到方程的左邊;若為受控電流源時,可先將其等效變換為受控電壓源進行處理,如果為受控電流源,則需進行特殊處理,即:當僅有一個回路電流流過該受控電流源時,則回路電流即等于該受控電流源電流,然后將其控制量用回路電流表示;而當多個回路電流流過該受控電流源時,則應將受控電流源兩端的電壓作為未知量引入方程中,同時補充回路電流與受控電流源電流的約束關系方程,并將其控制量表示為回路電流。5. 求解各支路電流。§2-11

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論