




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、立體幾何中與球有關(guān)的“內(nèi)切” 與“ 外接”問題的研究縱觀近幾年高考對于組合體的考查,重點放在與球相關(guān)的外接與內(nèi)切問題上.要求學(xué)生有較強(qiáng)的空間想象能力和準(zhǔn)確的計算能力,才能順利解答.從實際教學(xué)來看,這部分知識是學(xué)生掌握最為模糊,看到就頭疼的題目.分析原因,除了這類題目的入手確實不易之外,主要是學(xué)生沒有形成解題的模式和套路,以至于遇到類似的題目便產(chǎn)生畏懼心理.本文就高中階段出現(xiàn)這類問題加以類型的總結(jié)和方法的探討.1 球與柱體規(guī)則的柱體,如正方體、長方體、正棱柱等能夠和球進(jìn)行充分的組合,以外接和內(nèi)切兩種形態(tài)進(jìn)行結(jié)合,通過球的半徑和棱柱的棱產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問題.1.1 球
2、與正方體發(fā)現(xiàn),解決正方體與球的組合問題,常用工具是截面圖,即根據(jù)組合的形式找到兩個幾何體的軸截面,通過兩個截面圖的位置關(guān)系,確定好正方體的棱與球的半徑的關(guān)系,進(jìn)而將空間問題轉(zhuǎn)化為平面問題.例 1 棱長為1的正方體的8個頂點都在球的表面上,分別是棱,的中點,則直線被球截得的線段長為( )A B CD1.2 球與長方體長方體各頂點可在一個球面上,故長方體存在外切球.但是不一定存在內(nèi)切球.設(shè)長方體的棱長為其體對角線為.當(dāng)球為長方體的外接球時,截面圖為長方體的對角面和其外接圓,和正方體的外接球的道理是一樣的,故球的半徑例 2 在長、寬、高分別為2,2,4的長方體內(nèi)有一個半徑為1的球,任意擺動此長方體,
3、則球經(jīng)過的空間部分的體積為( )A.B.4C.D.1.3 球與正棱柱例3 正四棱柱的各頂點都在半徑為的球面上,則正四棱柱的側(cè)面積有最 值,為 .2 球與錐體規(guī)則的錐體,如正四面體、正棱錐、特殊的一些棱錐等能夠和球進(jìn)行充分的組合,以外接和內(nèi)切兩種形態(tài)進(jìn)行結(jié)合,通過球的半徑和棱錐的棱和高產(chǎn)生聯(lián)系,然后考查幾何體的體積或者表面積等相關(guān)問題.2.1 球與正四面體解得:這個解法是通過利用兩心合一的思路,建立含有兩個球的半徑的等量關(guān)系進(jìn)行求解.同時我們可以發(fā)現(xiàn),球心為正四面體高的四等分點.如果我們牢記這些數(shù)量關(guān)系,可為解題帶來極大的方便.例4 將半徑都為的四個鋼球完全裝入形狀為正四面體的容器里,這個正四面
4、體的高的最小值為 ( )A. B. 2+ C. 4+ D. 球的外切正四面體,這個小球球心與外切正四面體的中心重合,而正四面體的中心到頂點的距離是中心到地面距離的3倍.2.2 球與三條側(cè)棱互相垂直的三棱錐球與三條側(cè)棱互相垂直的三棱錐組合問題,主要是體現(xiàn)在球為三棱錐的外接球.解決的基本方法是補(bǔ)形例5 在正三棱錐中,分別是棱的中點,且,若側(cè)棱,則正2.3 球與正棱錐 球與正棱錐的組合,常見的有兩類,一是球為三棱錐的外接球,此時三棱錐的各個頂點在球面上,根據(jù)截面圖的特點,可以構(gòu)造直角三角形進(jìn)行求解.二是球為正棱錐的內(nèi)切球,例如正三棱錐的內(nèi)切球,球與正三棱錐四個面相切,球心到四個面的距離相等,都為球半
5、徑這樣求球的半徑可轉(zhuǎn)化為球球心到三棱錐面的距離,故可采用等體積法解決,即四個小三棱錐的體積和為正三棱錐的體積.例6 在三棱錐PABC中,PAPB=PC=,側(cè)棱PA與底面ABC所成的角為60°,則該三棱錐外接球的體積為( ) A B. C. 4D.接球的球心,則.例7 矩形中,沿將矩形折成一個直二面角,則四面體的外接球的體積是( )A. B. C. D.3 球與球?qū)€多個小球結(jié)合在一起,組合成復(fù)雜的幾何體問題,要求有豐富的空間想象能力,解決本類問題需掌握恰當(dāng)?shù)奶幚硎侄?,如?zhǔn)確確定各個小球的球心的位置關(guān)系,或者巧借截面圖等方法,將空間問題轉(zhuǎn)化平面問題求解.4 球與幾何體的各條棱相切球與幾何體的各條棱相切問題,關(guān)鍵要抓住棱與球相切的幾何性質(zhì),達(dá)到明確球心的位置為目的,然后通過構(gòu)造直角三角形進(jìn)行轉(zhuǎn)換和求解.如與正四面體各棱都相切的球的半徑為相對棱的一半:.例8 把一個皮球放入如圖10所示的由8根長均為20 cm的鐵絲接成的四綜合上面的四種類型,解決與球的外切問題主要是指球外切多面體與旋轉(zhuǎn)體,解答時首先要找準(zhǔn)切點,通過作截面來解決.如果外切的是多面體,則作截面時主要抓住多面體過球心的對角面來作;把一個多面體的幾個頂點放在球面上即為球的內(nèi)接問題解決這類問題的關(guān)鍵是抓住內(nèi)接的特點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智慧城市規(guī)劃與數(shù)字經(jīng)濟(jì)發(fā)展
- 西南財經(jīng)大學(xué)天府學(xué)院《園藝植物栽培學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海工商外國語職業(yè)學(xué)院《教學(xué)藝術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年遼寧省盤錦雙臺子區(qū)六校聯(lián)考化學(xué)九上期末達(dá)標(biāo)檢測模擬試題含解析
- 2025屆江蘇省無錫市江陰市南閘實驗學(xué)校九年級化學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 2024-2025學(xué)年江蘇省鎮(zhèn)江市鎮(zhèn)江中學(xué)九上化學(xué)期末監(jiān)測試題含解析
- 公路貨運行業(yè)數(shù)字化轉(zhuǎn)型與電子發(fā)票應(yīng)用研究報告
- 河源放心食堂管理辦法
- 泉州農(nóng)田流轉(zhuǎn)管理辦法
- 法律保障基金管理辦法
- 煤礦開展消防安全知識培訓(xùn)
- 城鎮(zhèn)老舊小區(qū)改造配套基礎(chǔ)設(shè)施建設(shè)項目初步設(shè)計
- 甘肅機(jī)電職業(yè)技術(shù)學(xué)院招聘事業(yè)編制工作人員筆試真題2024
- 2025年行政執(zhí)法人員執(zhí)法證考試必考多選題庫及答案(共250題)
- 2024年山東夏季高中學(xué)業(yè)水平合格考?xì)v史試卷真題(含答案詳解)
- 川崎病課件講稿
- 《優(yōu)質(zhì)提問教學(xué)法-讓每個學(xué)生都參與其中》讀書筆記
- 表11項目管理班子配備情況輔助說明資料
- 叉車日常維護(hù)保養(yǎng)檢查記錄表
- 高中英語人教版2019必修二綜合檢測限時試(六)(有答案)
- 教學(xué)材料之十八案例西南航空公司
評論
0/150
提交評論