運算放大器電路中固有噪聲的分析和測量 ——_第1頁
運算放大器電路中固有噪聲的分析和測量 ——_第2頁
運算放大器電路中固有噪聲的分析和測量 ——_第3頁
運算放大器電路中固有噪聲的分析和測量 ——_第4頁
運算放大器電路中固有噪聲的分析和測量 ——_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、運算放大器電路中固有噪聲的分析和測量 第五部分:噪聲測量簡介作者:德州儀器 (TI) 高級應(yīng)用工程師 Art Kay在第四部分中,我們采用了 TINA SPICE 來分析運算放大器 (op amp) 中的噪聲。同時,TINA SPICE 分析所采用的示范電路也可用于第三部分的工藝分析 (hand analysis) 范例中,而且使用工藝分析和 TINA SPICE 所得出的結(jié)果非常接近。在第五部分中,我們將著重介紹用于噪聲測量的幾款不同型號的設(shè)備,并探討設(shè)備的技術(shù)規(guī)范以及與噪聲測量有關(guān)的運行模式。雖然探討的是具體的設(shè)備型號,但是相關(guān)的原理適用于大多數(shù)的設(shè)備。在第六部分中,我們將向您展示實際的應(yīng)

2、用范例如何運用相關(guān)設(shè)備來測量第三部分和第四部分中所闡述的電路。噪聲測量設(shè)備:真正的 RMS DVM噪聲測量試驗設(shè)備有三種:分別為真有效值 (RMS) 表、示波器以及光譜分析儀。真有效值表可以測量各種不同波形的 AC 信號 RMS 電壓。通常情況下,很多儀表通過檢測峰值電壓,然后將峰值電壓乘以 0.707,計算出 RMS 值。然而,采用這種有效值計算方法的儀表并不是真正的 RMS 表,因為這種儀表在測量時,通常假定波形為正弦波。另一方面,一款真正的 RMS 表可以測量諸如噪聲等非正弦波形。許多高精度的數(shù)字萬用表 (DMM) 都具有真正的 RMS 功能。通常而言,數(shù)字萬用表通過將輸入電壓數(shù)字化、采

3、集數(shù)以千計的樣本并對 RMS 值進行數(shù)學(xué)計算,來實現(xiàn)上述功能。一款 DMM 在完成該測量時通常要具備兩種設(shè)置:“AC 設(shè)置”以及“AC+DC 設(shè)置”。在“AC”設(shè)置模式下,DMM 輸入電壓為連接到數(shù)字轉(zhuǎn)換器的 AC 電壓。因此,此時 DC 組件處于隔離狀態(tài)這是進行寬帶噪聲測量理想的運行模式,因為,從數(shù)學(xué)層面上來說,測量結(jié)果等同于噪聲的標準偏差。在“AC+DC”設(shè)置模式下,輸入信號直接被數(shù)字化,同時完成了對 RMS 值的計算。這種運行模式不能用于寬帶噪聲測量。如欲了解典型的高精度真正 RMS 表的結(jié)構(gòu)圖,敬請參閱圖 5.1。圖 5.1:典型的高精度真正 RMS DVM 的示例當(dāng)使用真正的 RMS

4、 DVM 測量噪聲時,您必須考慮其技術(shù)規(guī)范和不同的運行模式。部分 DMM 具有專門針對寬帶噪聲測量優(yōu)化的特殊運行模式。在這種模式下,DMM 就成為一款真正的 RMS,運行模式為 AC 耦合模式,其能夠測量從 20 Hz 至 10 MHz 的帶寬噪聲。對于一款高精度 DMM 來說,20uV 是固有噪聲的典型值。如欲了解這些技術(shù)規(guī)范的一覽表,敬請參閱圖 5.2。請注意,只要將 DMM 輸入端進行短路,就能測出固有噪聲。 多種真正的 RMS 模式:請閱讀有關(guān)的技術(shù)規(guī)范,以選擇噪聲測量的最佳模式。 標稱帶寬:20 Hz 至 10 MHz。 精確度:標稱帶寬的 0.1%。 固有噪聲為:20uV(10mV

5、 量程) 量程:10mV、100mV 1000V圖 5.2:典型的高精度儀表規(guī)范一覽表噪聲測量的設(shè)備:示波器采用真正的 RMS 儀表測量噪聲的一個不足之處在于:這種儀表不能識別噪聲的性質(zhì)。例如,真正的 RMS 儀表不能識別特定頻率時噪聲拾波 (noise pickup) 和寬帶噪聲之間的區(qū)別。然而,示波器能使您觀察到時域噪聲波形。值得注意的是,大多數(shù)不同類型噪聲的波形差異性很大,因此,利用示波器能夠確定何種噪聲影響最大。數(shù)字和模擬示波器均可用于噪聲測量。由于噪聲在性質(zhì)方面的隨意性,因此噪聲信號不能觸發(fā)模擬示波器,只有重復(fù)性波形才能觸發(fā)模擬示波器。然而,當(dāng)存在噪聲源輸入時,模擬示波器上則顯示出獨

6、特的影像。圖 5.3 顯示了采用模擬示波器進行寬帶測量得出的結(jié)果。值得注意的是,由于顯示的熒光特性以及噪聲對模擬示波器的非觸發(fā)性,模擬示波器常常生成一般和“拖尾”波形。大多數(shù)標準模擬示波器的缺點就是,它們不能檢測到低頻噪聲(1/f 噪聲)。圖 5.3:模擬示波器上的白噪聲數(shù)字示波器具有諸多有助于測量噪聲的實用的特性,其能檢測到低頻噪聲波形(如 1/f 噪聲)。同時,數(shù)字示波器還可以對 RMS 進行數(shù)學(xué)計算。圖 5.4 所示的噪聲源與圖 5.3 中的噪聲源相同的,這種噪聲源采用數(shù)字示波器才能檢測出。圖5.4:數(shù)字示波器上的白噪聲當(dāng)使用示波器測量噪聲時,應(yīng)遵循一些通用指南。首先,在測量噪聲信號前,

7、有一項重要的工作就是檢查示波器的固有噪聲。這項檢查工作可以通過連接示波器輸入端的 BNC 短路電容器 (shorting cap),或?qū)⑹静ㄆ饕€與接地短路連接(如果采用了 1x 探針)。這種考慮之所以這么重要,是因為采用 1x 探針時的測量范圍會小 10 倍。大多數(shù)質(zhì)量上乘的示波器都擁有 1mV/division 量程,并配有 1x 示波器探針或 BNC 直接連接;同時,還具有帶 10x 探針的 10mV/division 固有噪聲。需要注意的是,與 1x 示波器探針相比,我們應(yīng)優(yōu)先考慮 BNC 直接連接,因為接地的連接方式能夠減小 RFI / EMI 干擾(請參閱圖 5.5)。其中一種避免

8、這種情況的方法就是,拆除示波器探針的接地引線和上端引線 (top cover),同時在探針的側(cè)面進行接地(請參閱圖 5.6)。圖 5.7 顯示了一個 BNC 短路電容。圖 5.5:接地能夠減小 RFI / EMI 干擾圖 5.6:拆除接地的示波器探針圖 5.7:BNC 短路電容大多數(shù)示波器都具有帶寬限制功能。為了準確測量噪聲,示波器的帶寬必須比所測量電路中的噪聲帶寬高。但是,為了獲得最佳的測量結(jié)果,示波器的帶寬應(yīng)調(diào)整為大于噪聲帶寬的某一數(shù)值。例如,假設(shè)示波器全帶寬為 400 MHz,當(dāng)開啟限制功能時,帶寬則為 20 MHz。如果使用 100 kHz 的噪聲帶寬測量電路中的噪聲,此時開啟帶寬限制

9、功能,才有實際意義。就這個示例而言,由于超過帶寬的 RFI/EMI 干擾將被消除,因此固有噪聲較低。圖 5.8和圖 5.9 顯示了具有和不具有帶寬限制功能的典型數(shù)字示波器的固有噪聲。圖 5.10 顯示了采用 10x 探針示波器的固有噪聲相當(dāng)高。圖 5.8:具有 1x 探針和帶寬限制功能的示波器固有噪聲圖 5.9:具有 1x 探針,但不具備帶寬限制功能的示波器固有噪聲圖 5.10:具有 10x 控針,但不具備帶寬限制功能的示波器固有噪聲另外,當(dāng)開展噪聲測量工作時,必須考慮示波器的耦合模式。通常情況下,在一個數(shù)值較高的 DC 電壓下工作才會產(chǎn)生噪聲信號,因此寬帶測量時,應(yīng)采用 AC 耦合模式。例如

10、,1mVpp 噪聲信號在 2V 的 DC 信號時,才能被觸發(fā)。因此,在 AC 耦合模式下,AC 信號被剔除,從而獲得了最高的增益。但是,需要特別說明的是,AC 耦合模式不能用于測量 1/f 噪聲。這是因為在 AC 耦合模式下,帶寬的截止頻率通常較低,約為 10 Hz。當(dāng)然,該截止頻率也會因耦合模式的不同而有所差別,但是,關(guān)鍵問題是這一較低的截止頻率對大部分的 1/f 噪聲測量而言過高。一般而言,1/f的大小從 0.1 至 10 Hz 不等。因此,進行 1/f 的測量工作時,通常采用具有外部帶通濾波器的 AC 耦合模式。圖 5.11 對使用示波器進行噪聲測量的通用指南作了總結(jié)。使用示波器進行噪聲

11、測量的通用指南 切勿使用 10x 探針進行低噪聲測量工作 采用 BNC 直接連接方式(比固有噪聲測量結(jié)果精確 10 倍) 采用 BNC 短路電容來測量固有噪聲如有必要,則可開啟帶寬限制功能 在 AC 耦合模式下使用數(shù)字示波器進行 1/f 噪聲測量(AC 耦合模式下,示波器帶通較高,為 10 Hz) 如有必要,則可采用 AC 耦合模式進行寬帶測量 圖 5.11:使用示波器進行噪聲測量的通用指南噪聲測量設(shè)備:頻譜分析儀頻譜分析儀是進行噪聲測量的功能強大的工具。一般說來,頻譜分析儀能夠顯示功率(或電壓)與頻率之間的關(guān)系,其與噪聲譜密度曲線相類似。實際上,一些頻譜分析儀具有特殊的運行模式,這種運行模式

12、使測量結(jié)果以頻譜密度單位(即 nV/rt-Hz)的形式,直接顯示出來。在其他情況下,測量結(jié)果必須乘以一個校正系數(shù),從而將相關(guān)計量單位轉(zhuǎn)化成頻譜密度單位。頻譜分析儀和示波器一樣,既有數(shù)字型的,也有模擬型的。模擬頻譜分析儀生成頻譜曲線的一種方法是:掃描各種頻率下的帶通濾波器,同時標繪出濾波器的測量輸出值。另一種方法是運用超外差接收技術(shù),該技術(shù)在各種頻率下完成對本地振蕩器的掃描。然而,數(shù)字頻譜分析儀則采用快速傅里葉變換來產(chǎn)生頻譜(常常與超外差接收技術(shù)配合使用)。雖然所使用的頻譜分析儀型號各異,但是一些主要參數(shù)仍需予以考慮。起始和終止頻率表明了帶通濾波器被掃描的頻率范圍。分辨率帶寬是帶通濾波器在頻率范

13、圍內(nèi)被掃描的寬度。降低分辨率帶寬,則能提升頻譜分析儀處理在離散頻率時信號的能力,同時,將延長掃描時間。圖 5.13 說明了掃描濾波器的運行情況,圖 5.14 和圖5.15 顯示了同一頻譜分析儀采用不同分辨率帶寬時,所得出的兩種測量結(jié)果。在圖 5.14 中,由于分辨率帶寬被設(shè)置得非常小,從而使離散頻率分量(即 150 Hz)得到了妥善處理。另一方面,在圖 5.15 中,由于分辨率帶寬被設(shè)置得非常大,使離散頻率分量(即 1200 Hz)未能得到妥善處理。圖 5.12:頻譜分析儀運行情況圖5.13:針對高分辨率信號選擇的分辨率帶寬圖 5.14:針對低分辨率信號選擇的分辨率帶寬在圖 5.13 和圖 5

14、.14 中,頻譜的大小以分貝毫瓦 (dBm) 為單位表示,這是頻譜分析儀常用的測量單位。一分貝毫瓦是指相對于一毫瓦,用分貝來計量的功率比值。就本例中的頻譜分析儀而言,分貝毫瓦的測量也要事先假設(shè)輸入阻抗為 50 歐姆。對大多數(shù)的頻譜分析儀而言,當(dāng)輸入阻抗選擇為 1M 歐姆時,情況也是如此。圖 5.15列出了將分貝毫瓦轉(zhuǎn)化為電壓有效值所采用公式的推導(dǎo)過程。在圖 5.16 中,該公式用于計算在圖 5.13 5.14 中列出的測量結(jié)果 10 dBm信號的電壓有效值。從圖 5.13 5.14 中,我們可以看出,當(dāng)分辨率帶寬降低時,固有噪聲則從 87 dBm 增加到 80 dBm。另一方面,當(dāng)分辨率帶寬發(fā)

15、生改變時,頻率處于 67 kHz 和 72 kHz 時的信號幅度并未發(fā)生改變。固有噪聲之所以受分辨率帶寬的影響,是因為其為熱噪聲,因此,帶寬的提高也增加了熱噪聲總量。另外,由于信號波形為正弦波曲線,而且不管帶寬如何變化,帶通濾波器內(nèi)部的振幅都會保持恒定,因此,頻率處于 67 kHz 和 72 kHz 時的信號幅度并不會受分辨率帶寬的影響。因為我們必須清楚在頻譜密度計算中不應(yīng)該包含離散信號,所以,有關(guān)噪聲分析方面的特性應(yīng)引起我們足夠的重視。比如,當(dāng)測量運算放大器的噪聲頻譜密度時,您會發(fā)現(xiàn)頻率在 60 Hz(功率上升線)時出現(xiàn)的一個離散信號。因為這個 60 Hz 的信號并非頻譜密度,而是一個離散信

16、號,所以它并未包含在功率噪聲頻譜密度曲線中。圖 5.15:將分貝毫瓦轉(zhuǎn)化為電壓有效值圖 5.16:將分貝毫瓦轉(zhuǎn)化為電壓有效值一些頻譜分析儀同噪聲頻譜密度一樣,可以 nV/rt-Hz 為單位顯示頻譜幅度。但是,如果不具備這種功能,我們可以用頻譜幅度除以分辨率噪聲帶寬的平方根來計算頻譜密度。需要說明的是,通常我們需要一個換算系數(shù),將分辨率帶寬轉(zhuǎn)化成分辨率噪聲帶寬。圖 5.17 給出了將分貝毫瓦頻譜轉(zhuǎn)化成頻譜密度的方程式。圖 5.17 還給出了將分辨率帶寬轉(zhuǎn)化成噪聲帶寬所需的換算系數(shù)表。圖 5.18 顯示了將示例頻譜分析儀中的頻譜轉(zhuǎn)化為頻譜密度的實例。圖 5.17:將 dBm 轉(zhuǎn)化為頻譜密度的方程式

17、此表摘自安捷倫頻譜分析儀測量和噪聲應(yīng)用手冊 1303 頁 1濾波器類型 應(yīng)用范圍4 極同步濾波器 大部分頻譜分析儀模擬4 極同步濾波器 部分頻譜分析儀模擬典型的 FFT 濾波器 基于 FFT 的頻譜分析儀圖 5.18:將 dBm 轉(zhuǎn)化為頻譜密度的方程式Kn 1.128 1.111 1.056圖 5.19:頻譜分析儀測量結(jié)果向頻譜密度轉(zhuǎn)化的實例另外,大多數(shù)頻譜分析儀都具有計算平均值的功能。這一功能消除了測量波動的影響,因此,測量結(jié)果的重復(fù)性更高。平均值的數(shù)量由頻譜分析儀的前置面板輸入(通常從 1 至 100)。圖 5.20 5.22 顯示了采用不同的平均值水平,測量得出的同一信號。圖 5.20

18、關(guān)閉平均值功能時的頻譜分析儀圖 5.21 平均值 = 2 時的頻譜分析儀圖 5.22 平均值 = 49 時的頻譜分析儀當(dāng)使用(或選擇)頻譜分析儀時,我們需要考慮的主要技術(shù)規(guī)范就是固有噪聲和帶寬。圖 5.23 中的表格列出了兩款不同頻譜分析儀的部分技術(shù)規(guī)范。典型的數(shù)字頻譜分析儀 典型的模擬頻譜分析儀50 nV/rtHz 固有噪聲 20 nV/rt-Hz帶寬 0.016Hz 至 120 kHz 10 Hz 至 150 MHz這是一款先進的數(shù)字頻譜分析這是一款款式較老的模擬頻譜分總體 儀,其采用 FFT 來產(chǎn)生頻譜。其析儀,其采用超外差接收技術(shù)產(chǎn)評價 可以測量極低的頻率,適用于 1/f 生頻譜。截止頻率較低,為等方面的測量工作。 10Hz,因此其不適用于典型的運算放大器 1/f 等方面的測量工作。圖 5.23:兩款不同頻譜分析儀的技術(shù)規(guī)范比

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論