同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第1頁(yè)
同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第2頁(yè)
同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第3頁(yè)
同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第4頁(yè)
同濟(jì)大學(xué)高數(shù)上冊(cè)知識(shí)點(diǎn)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、word高等數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)一、 函數(shù)與極限(一) 函數(shù)1、 函數(shù)定義及性質(zhì)有界性、單調(diào)性、奇偶性、周期性;2、 反函數(shù)、復(fù)合函數(shù)、函數(shù)的運(yùn)算;3、 初等函數(shù):冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、反三角函數(shù)、雙曲函數(shù)、反雙曲函數(shù);4、 函數(shù)的連續(xù)性與間斷點(diǎn);函數(shù)在連續(xù) 第一類:左右極限均存在.間斷點(diǎn) 可去間斷點(diǎn)、跳躍間斷點(diǎn) 第二類:左右極限、至少有一個(gè)不存在. 無(wú)窮間斷點(diǎn)、振蕩間斷點(diǎn)5、 閉區(qū)間上連續(xù)函數(shù)的性質(zhì):有界性與最大值最小值定理、零點(diǎn)定理、介值定理及其推論.(二) 極限1、 定義1) 數(shù)列極限 2) 函數(shù)極限左極限: 右極限:2、 極限存在準(zhǔn)那么1) 夾逼準(zhǔn)那么:12 2) 單調(diào)有界準(zhǔn)

2、那么:?jiǎn)握{(diào)有界數(shù)列必有極限.3、 無(wú)窮小大量1) 定義:假設(shè)那么稱為無(wú)窮小量;假設(shè)那么稱為無(wú)窮大量.2) 無(wú)窮小的階:高階無(wú)窮小、同階無(wú)窮小、等價(jià)無(wú)窮小、階無(wú)窮小Th1 ;Th2 無(wú)窮小代換4、 求極限的方法1) 單調(diào)有界準(zhǔn)那么;2) 夾逼準(zhǔn)那么;3) 極限運(yùn)算準(zhǔn)那么及函數(shù)連續(xù)性;4) 兩個(gè)重要極限:a) b) 5) 無(wú)窮小代換:a)b)c) d) e)二、 導(dǎo)數(shù)與微分(一) 導(dǎo)數(shù)1、 定義:左導(dǎo)數(shù): 右導(dǎo)數(shù):函數(shù)在點(diǎn)可導(dǎo)2、 幾何意義:為曲線在點(diǎn)處的切線的斜率.3、 可導(dǎo)與連續(xù)的關(guān)系:4、 求導(dǎo)的方法1) 導(dǎo)數(shù)定義;2) 根本公式;3) 四那么運(yùn)算;4) 復(fù)合函數(shù)求導(dǎo)鏈?zhǔn)椒敲矗?) 隱函數(shù)

3、求導(dǎo)數(shù);6) 參數(shù)方程求導(dǎo);7) 對(duì)數(shù)求導(dǎo)法.5、 高階導(dǎo)數(shù)1) 定義:2) Leibniz公式:(二) 微分1) 定義:,其中與無(wú)關(guān).2) 可微與可導(dǎo)的關(guān)系:可微可導(dǎo),且三、 微分中值定理與導(dǎo)數(shù)的應(yīng)用(一) 中值定理1、 Rolle羅爾定理:假設(shè)函數(shù)滿足:1; 2; 3;那么.2、 Lagrange拉格朗日中值定理:假設(shè)函數(shù)滿足:1; 2;那么.3、 Cauchy柯西中值定理:假設(shè)函數(shù)滿足:1; 2;3那么(二) 洛必達(dá)法那么(三) Taylor公式(四) 單調(diào)性及極值1、 單調(diào)性判別法:,那么假設(shè),那么單調(diào)增加;那么假設(shè),那么單調(diào)減少.2、 極值及其判定定理:a) 必要條件:在可導(dǎo),假設(shè)為

4、的極值點(diǎn),那么.b) 第一充分條件:在的鄰域內(nèi)可導(dǎo),且,那么假設(shè)當(dāng)時(shí),當(dāng)時(shí),那么為極大值點(diǎn);假設(shè)當(dāng)時(shí),當(dāng)時(shí),那么為極小值點(diǎn);假設(shè)在的兩側(cè)不變號(hào),那么不是極值點(diǎn).c) 第二充分條件:在處二階可導(dǎo),且,那么假設(shè),那么為極大值點(diǎn);假設(shè),那么為極小值點(diǎn).3、 凹凸性及其判斷,拐點(diǎn)1在區(qū)間I上連續(xù),假設(shè),那么稱在區(qū)間I 上的圖形是凹的;假設(shè),那么稱在區(qū)間I 上的圖形是凸的.2判定定理:在上連續(xù),在上有一階、二階導(dǎo)數(shù),那么 a) 假設(shè),那么在上的圖形是凹的; b) 假設(shè),那么在上的圖形是凸的.3拐點(diǎn):設(shè)在區(qū)間I上連續(xù),是的內(nèi)點(diǎn),如果曲線經(jīng)過(guò)點(diǎn)時(shí),曲線的凹凸性改變了,那么稱點(diǎn)為曲線的拐點(diǎn).(五) 不等式證明

5、1、 利用微分中值定理;2、 利用函數(shù)單調(diào)性;3、 利用極值最值.(六) 方程根的討論1、 連續(xù)函數(shù)的介值定理;2、 Rolle定理;3、 函數(shù)的單調(diào)性;4、 極值、最值;5、 凹凸性.(七) 漸近線1、 鉛直漸近線:,那么為一條鉛直漸近線;2、 水平漸近線:,那么為一條水平漸近線;3、 斜漸近線:存在,那么為一條斜 漸近線.(八) 圖形描繪四、 不定積分(一) 概念和性質(zhì)1、 原函數(shù):在區(qū)間I上,假設(shè)函數(shù)可導(dǎo),且,那么稱為的一個(gè)原函數(shù).2、 不定積分:在區(qū)間I上,函數(shù)的帶有任意常數(shù)的原函數(shù)稱為在區(qū)間I上的不定積分.3、 根本積分表P188,13個(gè)公式;4、 性質(zhì)線性性. (二) 換元積分法1

6、、 第一類換元法湊微分:2、 第二類換元法變量代換:(三) 分部積分法:(四) 有理函數(shù)積分 1、“拆; 2、變量代換三角代換、倒代換、根式代換等.五、 定積分(一) 概念與性質(zhì):1、 定義:2、 性質(zhì):7條性質(zhì)7 積分中值定理 函數(shù)在區(qū)間上連續(xù),那么,使 平均值:(二) 微積分根本公式NL公式1、 變上限積分:設(shè),那么推廣:2、 NL公式:假設(shè)為的一個(gè)原函數(shù),那么(三) 換元法和分部積分1、 換元法:2、 分部積分法:(四) 反常積分1、 無(wú)窮積分:2、 瑕積分:a為瑕點(diǎn)b為瑕點(diǎn)兩個(gè)重要的反常積分:1) 2) 六、 定積分的應(yīng)用(一) 平面圖形的面積1、 直角坐標(biāo): 2、 極坐標(biāo):(二) 體

7、積1、 旋轉(zhuǎn)體體積:a)曲邊梯形軸,繞軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體的體積: b)曲邊梯形軸,繞軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體的體積: 柱殼法2、 平行截面面積的立體:(三) 弧長(zhǎng)1、 直角坐標(biāo):2、 參數(shù)方程:3、 極坐標(biāo):七、 微分方程(一) 概念1、 微分方程:表示未知函數(shù)、未知函數(shù)的導(dǎo)數(shù)及自變量之間關(guān)系的方程. 階:微分方程中所出現(xiàn)的未知函數(shù)的最高階導(dǎo)數(shù)的階數(shù).2、 解:使微分方程成為恒等式的函數(shù).通解:方程的解中含有任意的常數(shù),且常數(shù)的個(gè)數(shù)與微分方程的階數(shù)相同.特解:確定了通解中的任意常數(shù)后得到的解.(二) 變量可別離的方程,兩邊積分(三) 齊次型方程,設(shè),那么;或,設(shè),那么(四) 一階線性微分方程用常數(shù)變易法或用公式: (五) 可降階的高階微分方程1、,兩邊積分次;2、不顯含有,令,那么;3、不顯含有,令,那么(六) 線性微分方程解的結(jié)構(gòu)1、是齊次線性方程的解,那么也是;2、是齊次線性方程的線性無(wú)關(guān)的特解,那么是方程的通解;3、為非齊次

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論