版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、格林公式定理 設(shè)閉區(qū)域 D 由分段光滑的曲線 L 圍成,函數(shù)P( x ,y)及 Q ( x ,y)在 D 上具有一階連續(xù)偏導(dǎo)數(shù),則有其中 L 是 D 的取正向的邊界曲線。上述公式稱格林公式。這一公式揭示了閉區(qū)域 D 上的二重積分與沿閉區(qū)域 D 的正向邊界曲線 L 上的曲線積分之間的聯(lián)系,利用這一聯(lián)系使得兩種積分的計算可以相互轉(zhuǎn)化。 (四)例題【 例 1- 3 - 22 】 計算半徑為 R 、中心角為 2a 的圓弧L 對于它的對稱軸的轉(zhuǎn)動慣量 I (線密度 1 )。【解】 取圓弧的圓心為原點,對稱軸為 x 軸,并使圓弧位于y軸的右側(cè)(圖 1 一 36 ) ,則 L 的參數(shù)方程為于是【 例 1-
2、3 - 23 】計算y2dx,其中L是半徑為 a 、圓心為原點、按逆時針方向繞行的上半圓周(圖 1 -3-7 )?!?解】 L 是參數(shù)方程為當(dāng)參數(shù)從 0 變到的曲線弧。因此 五、積分的應(yīng)用(一)定積分的應(yīng)用 1 幾何應(yīng)用 ( 1 )平面圖形的面積 1 )直角坐標(biāo)情形設(shè)平面圖形由曲線 y = f ( x )、y = g ( x ) (f( x ) g ( x ) )和直線 x = a 、 x = b所圍成(圖 1-3 - 8 ) ,則其面積2 )極坐標(biāo)情形設(shè)平面圖形由曲線 ( )及射線a、所圍成(圖 1-3-9 ) ,則其面積( 2 )體積 l )旋轉(zhuǎn)體的體積設(shè)旋轉(zhuǎn)體由曲線 y = f ( x
3、)與直線 x = a 、 x = b 及 x 軸所圍成的平面圖形繞x軸旋轉(zhuǎn)一周而成(圖 1-3 -10 ) ,則其體積( 3 )平面曲線的弧長 l )直角坐標(biāo)情形設(shè)曲線的方程為 y = f ( x ) ( a x b ) , f ( x )在 a ,b上具有一階連續(xù)導(dǎo)數(shù),則其弧長2 )參數(shù)方程情形設(shè)曲線的參數(shù)方程為 x ( t ) , y ( t ) (at ), ( t )、( t )在 a, 上具有連續(xù)導(dǎo)數(shù),則其弧長3 )極坐標(biāo)情形設(shè)曲線的極坐標(biāo)方程為() ( a ),( )在 a ,上具有連續(xù)導(dǎo)數(shù),則其弧長 s =( 2 )水壓力設(shè)有平面薄板,鉛直放置水中,取薄板所在平面與水平面的交線為
4、 y 軸,x 軸鉛直向下(圖 1-3 -12 ) ,設(shè)薄板的形狀為則薄板一側(cè)所受的水壓力為其中 為水的密度, g 為重力加速度。(二)二重積分的應(yīng)用 1 曲面的面積設(shè)曲面的方程為 z = f ( x ,y),在 x Oy面上的投影區(qū)域為 D , f (x,y)在 D 上具有一階連續(xù)偏導(dǎo)數(shù),則曲面的面積2 平面薄片的質(zhì)量、重心及轉(zhuǎn)動慣量設(shè)平面薄片占有 x Oy面上的區(qū)域 D ,薄片在 D 上任一點 P ( x , y )處的面密度為( x , y ) ,則薄片的質(zhì)量為薄片重心的坐標(biāo)為薄片關(guān)于 x 軸、 y 軸的轉(zhuǎn)動慣量為(三)例題 【 例 1 -3 -25 】 計算由兩條拋物線:y2 = x 、
5、 y x2所圍成的圖形的面積?!窘?】 兩條拋物線所圍成的圖形如圖 1-3-13 所示, x 的變化區(qū)間為 0 , 1 ,所求面積為【例 1- 3 -26 】 計算心形線 a ( 1 + cos ) ( a> 0) 所圍成的圖形的面積?!?解 】 心形線所圍成的圖形如圖 1-3 -14 所示,的變化區(qū)間為 -,。所求面積為【 例1-3-27】計算由橢圓= 1所圍成的圖形繞 x 軸旋轉(zhuǎn)而成的旋轉(zhuǎn)橢球體的體積為【解 】 這個旋轉(zhuǎn)體也可看作是由半個橢圓及 x 軸圍成的圖形繞x軸旋轉(zhuǎn)而成。 x 的變化區(qū)間為- a , a 。所求體積為故應(yīng)選( C )?!纠? - 3 -29】 計算擺線 x = a(- sin ) ,y a ( 1 cos)的一拱( 0 2)(圖 l -3-15 )的長度。【 解 】 的變化區(qū)間為 0 , 2, x '() = a ( 1 cos ) ,y() = asin ,所求弧長為【 例 1-3 30】 求半徑為 a 的均勻半圓薄
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 普外科科務(wù)會議記錄
- 文言文300個實詞、18個虛詞的用法大總結(jié)我就不信沒人要
- 服裝團長合作協(xié)議書范文
- 電頻爐買賣合同協(xié)議書范文模板
- 寶媽生活費離婚協(xié)議書范文范本
- 機關(guān)供菜協(xié)議書范文模板下載
- 小型餐飲店入股協(xié)議書范文模板
- 農(nóng)民工工資保證金三方協(xié)議書范文
- 建筑CAD 第2版 教案全套-教學(xué)設(shè)計 李麗 1.1-9.5 了解Auto CAD的功能-繪制建筑詳圖
- 語法知識-經(jīng)濟生活-價值尺度職能的經(jīng)典測試題含答案解析
- 運動與脂肪PPT課件
- 龍高級中學(xué)龐素微
- 浙江大學(xué)管理學(xué)院案例撰寫規(guī)范
- C++調(diào)試方法和技巧
- 醫(yī)院行政管理大部制改革的實踐
- 酵母菌及其在食品中的應(yīng)用
- 酒店質(zhì)檢表格(完整版)
- 教育教學(xué)成果獎評審指標(biāo)
- 年產(chǎn)15萬噸環(huán)己醇工藝設(shè)計
- 廠紀(jì)最新版廠規(guī)、規(guī)章制度
- FK61玻璃拋光總結(jié)
評論
0/150
提交評論