




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第一講 不規(guī)則圖形面積的計(jì)算(一)我們曾經(jīng)學(xué)過的三角形、長方形、正方形、平行四邊形、梯形、菱形、圓和扇形等圖形,一般稱為基本圖形或規(guī)則圖形,它們的面積及周長都有相應(yīng)的公式直接計(jì)算。實(shí)際問題中,有些圖形不是以基本圖形的形狀出現(xiàn),而是由一些基本圖形組合、拼湊成的,它們的面積及周長無法應(yīng)用公式直接計(jì)算。一般我們稱這樣的圖形為不規(guī)則圖形。那么,不規(guī)則圖形的面積及周長怎樣去計(jì)算呢?我們可以針對這些圖形通過實(shí)施割補(bǔ)、剪拼等方法將它們轉(zhuǎn)化為基本圖形的和、差關(guān)系,問題就能解決了。例1 如下圖,甲、乙兩圖形都是正方形,它們的邊長分別是10厘米和12厘米。求陰影部分的面積。 解:陰影部分的面積等于甲、乙兩個(gè)正方形
2、面積之和減去三個(gè)“空白”三角形(ABG、BDE、EFG)的面積之和。因?yàn)镾ABG=×10×10=50; SBDE=(1012)×12=132; SEFG=(1210)×12=12。又因?yàn)镾甲S乙=12×1210×10=244,所以陰影部分面積=244(5013212)=50(平方厘米)例2 如下圖,正方形ABCD的邊長為6厘米,ABE、ADF與四邊形AECF的面積彼此相等,求三角形AEF的面積。解:因?yàn)锳BE、ADF與四邊形AECF的面積彼此相等,所以四邊形AECF的面積與ABE、ADF的面積都等于正方形ABCD面積的三分之一。也就是
3、:S四邊形AECF=SABE=SADF=×6×6=12。在ABE中,因?yàn)锳B=6,所以BE=4,同理DF=4,因此,CE=CF=2,所以ECF的面積為2×2÷2=2。所以SAEF= S四邊形AECFSECF=122=10(平方厘米)。例3:兩塊等腰直角三角形的三角板,直角邊分別是10厘米和6厘米。如下圖那樣重合。求重合部分(陰影部分)的面積。 解:在等腰直角三角形ABC中, AB=10 SABC=×10×10=50又 SABG=SABC=×50=25, EF=BF=ABAF=106=4, SBEF=×4×
4、4=8, 陰影部分面積= SABGSBEF=258=17(平方厘米)。例4:如下圖,A為CDE的DE邊上中點(diǎn),BC=CD,若ABC(陰影部分)面積為5平方厘米,求ABD及ACE的面積。 解:取BD中點(diǎn)F,連結(jié)AF。因?yàn)锳DF、ABF和ABC等底等高,所以它們的面積相等,都等于5平方厘米。所以ACD的面積等于15平方厘,ABD的面積等于10平方厘米。又由于ACE與ACD等底等高,所以ACE的面積是15平方厘米。例5:如下圖,在正方形ABCD中,三角形ABE的面積是8平方厘米,它是三角形DEC的面積的。求正方形ABCD的面積。 解:過E作BC的垂線交AD于F。在矩形ABEF中,AE是對角線,所以S
5、ABE=SAEF=8。在矩形CDFE中DE是對角線,所以SECD=SEDF。因此,正方形面積=8×28÷×2=36(平方厘米)。例6:已知SABC=1,AE=ED,BD=BC,求陰影部分的面積。 解:連結(jié)DF。 AE=ED, SAEF=SDEF;SABE=SBED, S陰影=SABF=SBFD。 BD=BC, SBFD=SBCF=(1SABF), SABF=(1SABF), SABF=。 陰影部分面積為。例7:正方形ABCD的邊長是4厘米,CG=3厘米,矩形DEFG的長DG為5厘米,求它的寬DE等于多少厘米? 解:連結(jié)AG,自A作AH垂直DG于H,在ADG中,AD
6、=4,DC=4(AD上的高)。 SAGD=4×4÷2=8,又DG=5, SAGD=AH×DG÷2= AH=8×2÷5=3.2(厘米), DE=3.2(厘米)。例8:梯形ABCD的面積是45平方米,高6米,AED的面積是5平方米,BC=10米,求陰影部分的面積。 解: 梯形面積=(上底下底)×高÷2即45=(ADBC)×6÷245=(AD10)×6÷2 AD=45×2÷610=5米。又SADE=×AD×高,即5=×5×
7、高, ADE的高是2米,EBC的高等于梯形的高減去ADE的高,即62=4米。 SBEC=×BC×4=×10×4=20(平方米)。例9:如圖,四邊形ABCD和DEFG都是平行四邊形,證明它們的面積相等。 證明:連結(jié)CE,平行四邊形ABCD的面積等于CDE面積的2倍,而平行四邊形DEFG的面積也是CDE面積的2倍。所以,平行四邊形ABCD的面積與平行四邊形DEFG的面積相等。習(xí) 題 一一、填空題(求下列各圖中陰影部分的面積): 二、解答題:1如右圖,ABCD為長方形,AB=10厘米,BC=6厘米,E、F分別為AB、AD中點(diǎn),且FG=2GE。求陰影部分的面積。
8、 2如圖,正方形ABCD與正方形DEFG的邊長分別為12厘米和6厘米。求四邊形CMGN(陰影部分)的面積。 3正方形ABCD的邊長為5厘米,CEF的面積比ADF的面積大5平方厘米。求CE的長。 4如下圖,已知CF=2DF,DE=EA,三角形BCF的面積為2,四邊形BEDF的面積為4。求三角形ABE的面積。 5直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米。又三角形ABF、三角形BCE和四邊形BEDF的面積相等。求三角形DEF的面積。 6如下圖,四個(gè)一樣大的長方形和一個(gè)小的正方形拼成一個(gè)大正方形,其中大、小正方形的面積分別是64平方米和9平方米。求長方形的長、寬各是多少? 7如下圖,有一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度XX養(yǎng)老服務(wù)機(jī)構(gòu)合作協(xié)議范本
- 二零二五年度特種設(shè)備安全評價(jià)與維護(hù)保養(yǎng)服務(wù)協(xié)議
- 2025版工業(yè)自動(dòng)化設(shè)備安裝及培訓(xùn)合同協(xié)議
- 建筑節(jié)能保溫施工方案
- 學(xué)校年度衛(wèi)生工作方案模板
- 奕福茶葉網(wǎng)絡(luò)營銷方案
- 中學(xué)消防安全疏散演練方案模板
- 父母首付借款協(xié)議
- 中級注冊安全工程師化工安全課件
- 體驗(yàn)型社會實(shí)踐活動(dòng)方案
- GB/T 10610-2009產(chǎn)品幾何技術(shù)規(guī)范(GPS)表面結(jié)構(gòu)輪廓法評定表面結(jié)構(gòu)的規(guī)則和方法
- 熠搜家庭戶用光伏電站推介
- 濟(jì)源幼兒園等級及管理辦法
- 高中區(qū)域地理:極地地區(qū)南極、北極
- 房地產(chǎn)開發(fā)全流程培訓(xùn)講義課件
- DB44-T 2163-2019山地自行車賽場服務(wù) 基本要求-(高清現(xiàn)行)
- 云南省特種設(shè)備檢驗(yàn)檢測收費(fèi)標(biāo)準(zhǔn)
- DB15T 933-2015 內(nèi)蒙古地區(qū)極端高溫、低溫和降雨標(biāo)準(zhǔn)
- 有鍵螺旋槳及尾軸安裝質(zhì)量要求標(biāo)準(zhǔn)
- 工傷責(zé)任保險(xiǎn)單
- 固體廢物采樣培訓(xùn)
評論
0/150
提交評論