版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2012年全國(guó)各地中考數(shù)學(xué)真題分類匯編 等腰三角形一.選擇題1.(2012肇慶)等腰三角形兩邊長(zhǎng)分別為4和8,則這個(gè)等腰三角形的周長(zhǎng)為 A16 B18 C20 D16或20 【解析】先利用等腰三角形的性質(zhì):兩腰相等;再由三角形的任意兩邊和大于第三邊,確定三角形的第三邊長(zhǎng),最后求得其周長(zhǎng). 【答案】C 【點(diǎn)評(píng)】本題將兩個(gè)簡(jiǎn)易的知識(shí)點(diǎn):等腰三角形的兩腰相等和三角形的三邊關(guān)系組合在一起.難度較小. 2(2012江西)等腰三角形的頂角為80°,則它的底角是()A20° B 50° C 60° D 80°考點(diǎn):等腰三角形的性質(zhì)。分析:根據(jù)三角形內(nèi)角和定理
2、和等腰三角形的性質(zhì),可以求得其底角的度數(shù)解答:解:等腰三角形的一個(gè)頂角為80°底角=(180°80°)÷2=50°故選B點(diǎn)評(píng):考查三角形內(nèi)角和定理和等腰三角形的性質(zhì)的運(yùn)用,比較簡(jiǎn)單3(2012中考)把等腰ABC沿底邊BC翻折,得到DBC,那么四邊形ABDC()解答:解:等腰ABC沿底邊BC翻折,得到DBC,四邊形ABDC是菱形,菱形既是中心對(duì)稱圖形,又是軸對(duì)稱圖形, 四邊形ABDC既是中心對(duì)稱圖形,又是軸對(duì)稱圖形故選C點(diǎn)評(píng):本題考查了中心對(duì)稱圖形,等腰三角形的性質(zhì),軸對(duì)稱圖形,判斷出四邊形ABDC是菱形是解題的關(guān)鍵4.(2012荊州)如圖,AB
3、C是等邊三角形,P是ABC的平分線BD上一點(diǎn),PEAB于點(diǎn)E,線段BP的垂直平分線交BC于點(diǎn)F,垂足為點(diǎn)Q若BF2,則PE的長(zhǎng)為( )A2 B2 C D3【解析】題目中已知了ABC是等邊三角形,聯(lián)想到等邊三角形的三邊相等、三角相等、三線合一的性質(zhì)。本題中,有含有30°角的直角三角形,要想到30°角的直角邊等于斜邊的一半。ABC是等邊三角形,BD是ABC的平分線,第9題圖ADEFPQCB所以ABD=CBD=ABC=30°。在直角QBF中,BF2,CBD=30°,所以BQ=.FQ是BP的垂直平分線,所以BP=2BQ=2在直角PBE中, BP=2,ABD =3
4、0°,所以PE= BP=.【答案】C【點(diǎn)評(píng)】題目中已知了ABC是等邊三角形,聯(lián)想到等邊三角形的三邊相等、三角相等、三線合一的性質(zhì)。本題中,有含有30°角的直角三角形,要想到30°的角所對(duì)的直角邊等于斜邊的一半。5(2012銅仁)如圖,在ABC中,ABC和ACB的平分線交于點(diǎn)E,過點(diǎn)E作MNBC交AB于M,交AC于N,若BM+CN=9,則線段MN的長(zhǎng)為()A6B7C8D9考點(diǎn):等腰三角形的判定與性質(zhì);平行線的性質(zhì)。解答:解:ABC、ACB的平分線相交于點(diǎn)E,MBE=EBC,ECN=ECB,MNBC,EBC=MEB,NEC=ECB,MBE=MEB,NEC=ECN,BM
5、=ME,EN=CN,MN=ME+EN,即MN=BM+CNBM+CN=9MN=9,故選D6(2012資陽(yáng))如圖,ABC是等腰三角形,點(diǎn)D是底邊BC上異于BC中點(diǎn)的一個(gè)點(diǎn),ADE=DAC,DE=AC運(yùn)用這個(gè)圖(不添加輔助線)可以說明下列哪一個(gè)命題是假命題?()A一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形B有一組對(duì)邊平行的四邊形是梯形C一組對(duì)邊相等,一組對(duì)角相等的四邊形是平行四邊形D對(duì)角線相等的四邊形是矩形考點(diǎn):平行四邊形的判定;全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);矩形的判定;梯形;命題與定理。分析:已知條件應(yīng)分析一組邊相等,一組角對(duì)應(yīng)相等的四邊不是平行四邊形,根據(jù)全等三角形判定方法得出
6、B=E,AB=DE,進(jìn)而得出一組對(duì)邊相等,一組對(duì)角相等的四邊形不是平行四邊形,得出答案即可解答:解:A一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形,根據(jù)等腰梯形符合要求,得出故此選項(xiàng)錯(cuò)誤;B有一組對(duì)邊平行的四邊形是梯形,若另一組對(duì)邊也平行,則此四邊形是平行四邊形,故此選項(xiàng)錯(cuò)誤;C一組對(duì)邊相等,一組對(duì)角相等的四邊形是平行四邊形,ABC是等腰三角形,AB=AC,B=C,DE=AC,AD=AD,ADE=DAC,即,ADEDAC,E=C,B=E,AB=DE,但是四邊形ABDE不是平行四邊形,故一組對(duì)邊相等,一組對(duì)角相等的四邊形不是平行四邊形,因此C符合題意,故此選項(xiàng)正確;D對(duì)角線相等的四邊形是矩形
7、,根據(jù)等腰梯形符合要求,得出故此選項(xiàng)錯(cuò)誤;故選:C點(diǎn)評(píng):此題主要考查了平行四邊形的判定方法以及全等三角形的判定,結(jié)合已知選項(xiàng),得出已知條件應(yīng)分析一組邊相等,一組角對(duì)應(yīng)相等的四邊不是平行四邊形是解題關(guān)鍵7(2012攀枝花)已知實(shí)數(shù)x,y滿足,則以x,y的值為兩邊長(zhǎng)的等腰三角形的周長(zhǎng)是()A20或16 B 20 C 16 D以上答案均不對(duì)考點(diǎn):等腰三角形的性質(zhì);非負(fù)數(shù)的性質(zhì):絕對(duì)值;非負(fù)數(shù)的性質(zhì):算術(shù)平方根;三角形三邊關(guān)系。分析:根據(jù)非負(fù)數(shù)的意義列出關(guān)于x、y的方程并求出x、y的值,再根據(jù)x是腰長(zhǎng)和底邊長(zhǎng)兩種情況討論求解解答:解:根據(jù)題意得,解得,(1)若4是腰長(zhǎng),則三角形的三邊長(zhǎng)為:4、4、8,
8、不能組成三角形;(2)若4是底邊長(zhǎng),則三角形的三邊長(zhǎng)為:4、8、8,能組成三角形,周長(zhǎng)為4+8+8=20故選B點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)、非負(fù)數(shù)的性質(zhì)及三角形三邊關(guān)系;解題主要利用了非負(fù)數(shù)的性質(zhì),分情況討論求解時(shí)要注意利用三角形的三邊關(guān)系對(duì)三邊能否組成三角形做出判斷根據(jù)題意列出方程是正確解答本題的關(guān)鍵8(2012廣安)已知等腰ABC中,ADBC于點(diǎn)D,且AD=BC,則ABC底角的度數(shù)為()A45°B75°C45°或75°D60°考點(diǎn):等腰三角形的性質(zhì);含30度角的直角三角形;等腰直角三角形。分析:首先根據(jù)題意畫出圖形,注意分別從BAC是頂
9、角與BAC是底角去分析,然后利用等腰三角形與直角三角形的性質(zhì),即可求得答案解答:解:如圖1:AB=AC,ADBC,BD=CD=BC,ADB=90°,AD=BC,AD=BD,B=45°,即此時(shí)ABC底角的度數(shù)為45°;如圖2,AC=BC,ADBC,ADC=90°,AD=BC,AD=AC,C=30°,CAB=B=75°,即此時(shí)ABC底角的度數(shù)為75°;綜上,ABC底角的度數(shù)為45°或75°故選C點(diǎn)評(píng):此題考查了等腰三角形的性質(zhì)、直角三角形的性質(zhì)以及三角形內(nèi)角和定理此題難度適中,注意數(shù)形結(jié)合思想與分類討論思想的
10、應(yīng)用是解此題的關(guān)鍵9.(2012孝感)如圖,在ABC中,AB=AC,A =36°,BD平分ABC交AC于點(diǎn)D,若AC=2,則AD的長(zhǎng)是( )A B C D【解析】根據(jù)三角形特點(diǎn),先求出角的度數(shù),從而得到三角形相似,再根據(jù)相似三角形對(duì)應(yīng)邊成比例即可求得在ABC中,AB=AC,A=36°,ABC=ACB=72°BD平ABC,ABD=CBD=36°,BD=AD=BC,BDC=72°ABCBCD故:ABBC=BCCD設(shè)AD=x,則BC=x,CD=2-x, 2x= x(2-x)解得x=或x=AC(舍去)【答案】C【點(diǎn)評(píng)】題考查了相似三角形的證明和性質(zhì),本
11、題中求證三角形相似是解題的關(guān)鍵10(2012潛江)如圖,ABC為等邊三角形,點(diǎn)E在BA的延長(zhǎng)線上,點(diǎn)D在BC邊上,且ED=EC若ABC的邊長(zhǎng)為4,AE=2,則BD的長(zhǎng)為()A2B3CD+1考點(diǎn):平行線分線段成比例;等腰三角形的性質(zhì);等邊三角形的性質(zhì)。分析:延長(zhǎng)BC至F點(diǎn),使得CF=BD,證得EBDEFC后即可證得B=F,然后證得ACEF,利用平行線分線段成比例定理證得CF=EA后即可求得BD的長(zhǎng)解答:解:延長(zhǎng)BC至F點(diǎn),使得CF=BD,ED=ECEDB=ECFEBDEFCB=FABC是等邊三角形,B=ACBACB=FACEFAE=CF=2BD=AE=CF=2故選A點(diǎn)評(píng):本題考查了等腰三角形及等
12、邊三角形的性質(zhì),解題的關(guān)鍵是正確的作出輔助線11.(2012孝感)如圖,在菱形ABCD中,A=60°,E,F(xiàn)分別是AB,AD的中點(diǎn),DE,BF相交于點(diǎn)G,連接BD,CG,有下列結(jié)論:BGD=120° ;BG+DG=CG;BDFCGB;其中正確的結(jié)論有( )A1個(gè) B2個(gè) C3個(gè) D4個(gè) 【解析】根據(jù)題意,ABD是等邊三角形,由此可推得BG=DG=EBG,GCB=30° ,GBC=90° ;因?yàn)橹苯侨切沃?0°角所對(duì)的邊等于斜邊的一半,所以BG=GC;顯然CG>BD,BDF和CGB不可能全等;故,正確【答案】C【點(diǎn)評(píng)】考查菱形的性質(zhì)和軸對(duì)
13、稱及等邊三角形等知識(shí)的綜合應(yīng)用根據(jù)A=60°得到等邊三角形ABD是解本題的關(guān)鍵二.填空題12. (2012廣元) 已知等腰三角形的一個(gè)內(nèi)角為80°,則另兩個(gè)角的度數(shù)是 【答案】50°,50°或80°,20°?!究键c(diǎn)】等腰三角形的性質(zhì),三角形內(nèi)角和定理?!痉治觥糠智闆r討論:(1)若等腰三角形的頂角為80°時(shí),另外兩個(gè)內(nèi)角=(180°80°)÷2=50°;(2)若等腰三角形的底角為80°時(shí),頂角為180°80°80°=20°。等腰三角形的一
14、個(gè)內(nèi)角為80°,則另兩個(gè)角的度數(shù)是50°,50°或80°,20°。13.(2012綏化)等腰三角形的兩邊長(zhǎng)是3和5,它的周長(zhǎng)是 【解析】 解:題中給出了等腰三角形的兩邊長(zhǎng),因沒給出具體誰(shuí)是底長(zhǎng),故需分類討論:當(dāng)3是底邊長(zhǎng)時(shí),周長(zhǎng)為5+5+3=13;當(dāng)5是底邊長(zhǎng)時(shí),周長(zhǎng)為3+3+5=11【答案】 11或13【點(diǎn)評(píng)】 本題考查了等腰三角形中的常見分類討論思想,已知兩邊求第三邊長(zhǎng)或周長(zhǎng)面積等,解決本題的關(guān)鍵是注意要分類討論,但注意有時(shí)其中一種情況不能構(gòu)造出三角形,考生稍不留神也會(huì)寫出這種不合題意的答案難度中等14.(2012哈爾濱)一個(gè)等腰三角形靜的
15、兩邊長(zhǎng)分別為5或6,則這個(gè)等腰三角形的周長(zhǎng)是 【解析】本題考查等腰三角的性質(zhì)、三角形三邊關(guān)系. 因?yàn)榈妊莾裳嗟?,所以其三邊可能?、5、6或6、6、5,經(jīng)檢驗(yàn)兩種可能都能組成三角形,所以這個(gè)三角形周長(zhǎng)是16或17.【答案】16或17【點(diǎn)評(píng)】本題易忽略檢驗(yàn)?zāi)芊窠M成三角形,注意分類討論思想的運(yùn)用.15.(2012遵義)一個(gè)等腰三角形的兩條邊分別為4cm和8cm,則這個(gè)三角形的周長(zhǎng)為解析:由于未說明兩邊哪個(gè)是腰哪個(gè)是底,故需分:(1)當(dāng)?shù)妊切蔚难鼮?cm;(2)當(dāng)?shù)妊切蔚难鼮?cm;兩種情況討論,從而得到其周長(zhǎng)解:(1)當(dāng)?shù)妊切蔚难鼮?cm,底為8cm時(shí),不能構(gòu)成三角形(2)當(dāng)?shù)妊?/p>
16、三角形的腰為8cm,底為4cm時(shí),能構(gòu)成三角形,周長(zhǎng)為4+8+8=20cm故這個(gè)等腰三角形的周長(zhǎng)是20cm故答案為:20cm答案:20cm點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行答案,這點(diǎn)非常重要,也是解題的關(guān)鍵16.(2012隨州)等腰三角形的周長(zhǎng)為16,其一邊長(zhǎng)為6,則另兩邊為_。解析:當(dāng)邊長(zhǎng)為6的邊為腰時(shí),則底時(shí),則另兩邊分別為5、5,根據(jù)三角形三邊關(guān)系可知,三邊也可以構(gòu)成三角形。所以兩種情況均成立。答案:6和4或5和5點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)和三角形的邊角關(guān)系。在題中沒有
17、明確所給邊為底邊還是腰時(shí),要分類討論,分別求解。且對(duì)于求出的邊長(zhǎng)要根據(jù)三角形邊角關(guān)系進(jìn)行驗(yàn)證,以防止三邊不能構(gòu)成三角形。17.(2012黃岡)如圖,在ABC 中,AB=AC,A=36°,AB的垂直平分線交AC點(diǎn)E,垂足為點(diǎn)D,連接BE,則EBC 的度數(shù)為_°.【解析】在ABC 中,AB=AC,A=36°得:ABC=C=72°. 由AB的垂直平分線交AC得AE=BE,ABE=A=36°,EBC=72°-36°=36°.【答案】36°【點(diǎn)評(píng)】本題主要考查等腰三角形和線段中垂線的性質(zhì).難度中等.18(2012寧
18、波)如圖,AEBD,C是BD上的點(diǎn),且AB=BC,ACD=110°,則EAB=40度考點(diǎn):等腰三角形的性質(zhì);平行線的性質(zhì)。分析:首先利用ACD=110°求得ACB與BAC的度數(shù),然后利用三角形內(nèi)角和定理求得B的度數(shù),然后利用平行線的性質(zhì)求得結(jié)論即可解答:解:AB=BC,ACB=BACACD=110°ACB=BAC=70°B=40°,AEBD,EAB=40°,故答案為40°點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)及平行線的性質(zhì),題目相對(duì)比較簡(jiǎn)單,屬于基礎(chǔ)題19.(2012淮安)如圖,ABC中,AB=AC,ADBC,垂足為點(diǎn)D,若BAC
19、=70º,則BAD= º【解析】根據(jù)等腰三角形的性質(zhì):等腰三角形底邊上的高、底邊上的中線、頂角的平分線互相重合(三線合一),可得BAD=BAC=35º【答案】35º【點(diǎn)評(píng)】本題考查了等腰三角形的性質(zhì),利用三線合一是正確解答本題的關(guān)鍵20.(2012濱州)如圖,在ABC中,AB=AD=DC,BAD=20°,則C= 【解析】AB=AD,BAD=20°,B=80°,ADC是ABD的外角,ADC=B+BAD=80°+20°=100°,AD=DC,C=40°【答案】40°【點(diǎn)評(píng)】本題考
20、查三角形的外角性質(zhì):三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和,AB=AD,又已知BAD的大小,可求出B、的大小又已知AD=DC,由三角形內(nèi)角和定理可得C的大小21. (2012吉林)如圖,是上的三點(diǎn),則 度 . 等腰三角形的性質(zhì);圓:圓內(nèi)同弧所對(duì)的圓周角與圓心角的關(guān)系(圓周角定理). 利用等腰三角形兩底角相等,圓內(nèi)同弧所對(duì)的圓周角都等于這條弧所對(duì)的圓心角的一半,即可求解.解:如圖,在中,.又是對(duì)的圓周角,是對(duì)的圓心角 22.(2012萊蕪)在ABC中,AB=AC=5,BC=6,若點(diǎn)P在邊AC上移動(dòng),則BP 的最小值是 . 【解析】過點(diǎn)A作ADBC于點(diǎn)D,因?yàn)锳B=AC=5,BC=6,所以B
21、D=3,所以AD=4,根據(jù)垂線段最短,當(dāng)BPAC時(shí),BP 有最小值.根據(jù)得到,, BP=【答案】【點(diǎn)評(píng)】本題考察了勾股定理、等腰三角形三線合一的性質(zhì)、等面積法??疾炝藢W(xué)生解決等腰三角形解決等腰三角形問題常加的輔助線。本題綜合性強(qiáng),難度中等。三.解答題23.(2012肇慶)如圖5,已知ACBC,BDAD,AC 與BD 交于O,AC=BD 求證:(1)BC=AD; (2)OAB是等腰三角形 ABCDO圖5【解析】通過觀察不難發(fā)現(xiàn)ACB BDA從而得出BC=AD,及C AB =D BA,進(jìn)而推出OAB是等腰三角形【答案】證明:(1)ACBC,BDAD D =C=90° (1分)ABCDO在
22、RtACB和 RtBDA 中,AB= BA ,AC=BD, ACB BDA(HL) (4分) BC=AD (5分) (2)由ACB BDA得 C AB =D BA (6分) OAB是等腰三角形 (7分)【點(diǎn)評(píng)】本題考查全等三角形的性質(zhì)與判定及等腰三角形的判定,考察了學(xué)生簡(jiǎn)單的推理能力。難度較小。24.(2012益陽(yáng))如圖,已知AEBC,AE平分DAC.求證:AB=AC 第15題圖【解析】 由AE平分DAC.得到1=2 又由兩直線平行,內(nèi)錯(cuò)角相等同位角相等,得到1=B,2=C.所以有:B=C 在中等角對(duì)等邊,即得到AB=AC【答案】證明:AE平分DAC, 1=2. AEBC,1=B,2=C. B
23、=C, AB=AC【點(diǎn)評(píng)】此題考查了角平分線的性質(zhì)、平行線的性質(zhì)和在三角形中等角對(duì)等邊的應(yīng)用,考查了學(xué)生綜合運(yùn)用知識(shí)來解決問題的能力,設(shè)問方式較常規(guī),為學(xué)生熟知,能讓學(xué)生正常發(fā)揮自己的思維水平,難度不大。25(2012濟(jì)南)(2)如圖2,在ABC中,AB=AC,A=40°,BD是ABC的平分線,求BDC的度數(shù)【考點(diǎn)】等腰三角形的性質(zhì)【專題】證明題【分析】(2)首先根據(jù)AB=AC,利用等角對(duì)等邊和已知的A的度數(shù)求出ABC和C的度數(shù),再根據(jù)已知的BD是ABC的平分線,利用角平分線的定義求出DBC的度數(shù),最后根據(jù)三角形的內(nèi)角和定理即可求出BDC的度數(shù)【解答】(2)解:AB=AC,A=40&
24、#176;,ABC=C=(180°-40°)=70°,又BD是ABC的平分線,DBC=ABC=35°,BDC=180°-DBC-C=75°【點(diǎn)評(píng)】此題考查了等腰三角形的性質(zhì),三角形的內(nèi)角和定理,角平分線的定義以及全等三角形的性質(zhì)與判定,熟練掌握定理與性質(zhì)是解本題的關(guān)鍵.26(2012廣東)如圖,在ABC中,AB=AC,ABC=72°(1)用直尺和圓規(guī)作ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法);(2)在(1)中作出ABC的平分線BD后,求BDC的度數(shù)考點(diǎn):作圖基本作圖;等腰三角形的性質(zhì)。解答:解:(1)一點(diǎn)
25、B為圓心,以任意長(zhǎng)長(zhǎng)為半徑畫弧,分別交AB、BC于點(diǎn)E、F;分別以點(diǎn)E、F為圓心,以大于EF為半徑畫圓,兩圓相較于點(diǎn)G,連接BG角AC于點(diǎn)D即可(2)在ABC中,AB=AC,ABC=72°,A=180°2ABC=180°144°=36°,AD是ABC的平分線,ABD=ABC=×72°=36°,BDC是ABD的外角,BDC=A+ABD=36°+36°=72°27(2012湘潭)如圖,ABC是邊長(zhǎng)為3的等邊三角形,將ABC沿直線BC向右平移,使B點(diǎn)與C點(diǎn)重合,得到DCE,連接BD,交AC于
26、F(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;(2)求線段BD的長(zhǎng)考點(diǎn):等邊三角形的性質(zhì);勾股定理;平移的性質(zhì)。專題:探究型。分析:(1)由平移的性質(zhì)可知BE=2BC=6,DE=AC=3,故可得出BDDE,由E=ACB=60°可知ACDE,故可得出結(jié)論;(2)在RtBDE中利用勾股定理即可得出BD的長(zhǎng)解答:解:(1)ACBDDCE由ABC平移而成,BE=2BC=6,DE=AC=3,E=ACB=60°,DE=BE,BDDE,E=ACB=60°,ACDE,BDAC;(2)在RtBED中,BE=6,DE=3,BD=3點(diǎn)評(píng):本題考查的是等邊三角形的性質(zhì)及平移的性質(zhì),熟
27、知圖形平移后的圖形與原圖形全等的性質(zhì)是解答此題的關(guān)鍵2011年全國(guó)各地中考數(shù)學(xué)真題分類匯編第23章 等腰三角形一、選擇題http:/ /1. (2011浙江省舟山,7,3分)如圖,邊長(zhǎng)為4的等邊ABC中,DE為中位線,則四邊形BCED的面積為( )(A)(B)(C)(D)(第7題)【答案】B2. (2011四川南充市,10,3分)如圖,ABC和CDE均為等腰直角三角形,點(diǎn)B,C,D在一條直線上,點(diǎn)M是AE的中點(diǎn),下列結(jié)論:tanAEC=;SABC+SCDESACE ;BMDM;BM=DM.正確結(jié)論的個(gè)數(shù)是( )(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)【答案】D3. (2011浙江義烏,1
28、0,3分)如圖,ABC和ADE都是等腰直角三角形,BAC=DAE=90°, 四邊形ACDE是平行四邊形,連結(jié)CE交AD于點(diǎn)F,連結(jié)BD交 CE于點(diǎn)G,連結(jié)BE. 下列結(jié)論中: CE=BD; ADC是等腰直角三角形; ADB=AEB; CD·AE=EF·CG;一定正確的結(jié)論有ABCDEFGA1個(gè) B2個(gè) C3個(gè) D4個(gè)【答案】D4. (2011臺(tái)灣全區(qū),30)如圖(十三),ABC中,以B為圓心,長(zhǎng)為半徑畫弧,分別交、于D、E兩點(diǎn),并連接、若A=30,則BDE的度數(shù)為何?A 45 B 525 C 675 D 75【答案】5. (2011臺(tái)灣全區(qū),34)如圖(十六),有
29、兩全等的正三角形ABC、DEF,且D、A分別為ABC、DEF的重心固定D點(diǎn),將DEF逆時(shí)針旋轉(zhuǎn),使得A落在上,如圖(十七)所示求圖(十六)與圖(十七)中,兩個(gè)三角形重迭區(qū)域的面積比為何?A2:1 B 3:2 C 4:3 D 5:4【答案】6. (2011山東濟(jì)寧,3,3分)如果一個(gè)等腰三角形的兩邊長(zhǎng)分別是5cm和6cm,那么此三角形的周長(zhǎng)是 A15cm B16cm C17cm D16cm或17cm【答案】D7. (2011四川涼山州,8,4分)如圖,在中,點(diǎn)為的中點(diǎn),垂足為點(diǎn),則等于() A B C D 【答案】C8. 二、填空題1. (2011山東濱州,15,4分)邊長(zhǎng)為6cm的等邊三角形中
30、,其一邊上高的長(zhǎng)度為_.【答案】cm2. (2011山東煙臺(tái),14,4分)等腰三角形的周長(zhǎng)為14,其一邊長(zhǎng)為4,那么,它的底邊為 .【答案】4或63. (2011浙江杭州,16,4)在等腰RtABC中,C=90°,AC1,過點(diǎn)C作直線lAB,F(xiàn)是l上的一點(diǎn),且ABAF,則點(diǎn)F到直線BC的距離為 【答案】4. (2011浙江臺(tái)州,14,5分)已知等邊ABC中,點(diǎn)D,E分別在邊AB,BC上,把BDE沿直線DE翻折,使點(diǎn)B落在點(diǎn)B處,DB,EB分別交邊AC于點(diǎn)F,G,若ADF=80º ,則EGC的度數(shù)為 【答案】80º5. (2011浙江省嘉興,14,5分)如圖,在AB
31、C中,AB=AC,則ABC的外角BCD °(第14題)【答案】1106. (2011湖南邵陽(yáng),11,3分)如圖(四)所示,在ABC中,AB=AC,B=50°,則A=_?!敬鸢浮?0°。提示:A=180°-2×50°=80°。7. (2011山東濟(jì)寧,15,3分)如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩個(gè)動(dòng)點(diǎn),且總使AD=BE,AE與CD交于點(diǎn)F,AGCD于點(diǎn)G,則 第15題D【答案】8. (2011湖南懷化,13,3分)如圖6,在ABC中,AB=AC,BAC的角平分線交BC邊于點(diǎn)D,AB=5,BC=6,則AD
32、=_.【答案】49. (2011四川樂山16,3分)如圖,已知AOB=,在射線OA、OB上分別取點(diǎn)OA=OB,連結(jié)AB,在BA、BB上分別取點(diǎn)A、B,使B B= B A,連結(jié)A B按此規(guī)律上去,記A B B=,則= ; = ?!敬鸢浮?10(2011湖南邵陽(yáng),11,3分)如圖(四)所示,在ABC中,AB=AC,B=50°,則A=_。【答案】80°。11. (2011貴州貴陽(yáng),15,4分)如圖,已知等腰RtABC的直角邊長(zhǎng)為1,以RtABC的斜邊AC為直角邊,畫第二個(gè)等腰RtACD,再以RtACD的斜邊AD為直角邊,畫第三個(gè)等腰RtADE,依此類推直到第五個(gè)等腰RtAFG,則
33、由這五個(gè)等腰直角三角形所構(gòu)成的圖形的面積為_(第15題圖) 【答案】12. (2011廣東茂名,14,3分)如圖,已知ABC是等邊三角形,點(diǎn)B、C、D、E在同一直線上,且CGCD,DFDE,則E 度【答案】15 三、解答題1. (2011廣東東莞,21,9分)如圖(1),ABC與EFD為等腰直角三角形,AC與DE重合,AB=EF=9,BACDEF90°,固定ABC,將EFD繞點(diǎn)A 順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止.不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)DE、DF(或它們的延長(zhǎng)線)分別交BC(或它的延長(zhǎng)線)于G、H點(diǎn),如圖(2).(1)問:始終與AGC相似的三角形有 及 ;(
34、2)設(shè)CGx,BHy,求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說明理由);(3)問:當(dāng)x為何值時(shí),AGH是等腰三角形?【解】(1)HGA及HAB; (2)由(1)可知AGCHAB,即,所以,(3)當(dāng)CG時(shí),GAC=HHAC,ACCHAGAC,AGGH又AHAG,AHGH此時(shí),AGH不可能是等腰三角形;當(dāng)CG=時(shí),G為BC的中點(diǎn),H與C重合,AGH是等腰三角形;此時(shí),GC=,即x=當(dāng)CG時(shí),由(1)可知AGCHGA所以,若AGH必是等腰三角形,只可能存在AG=AH若AG=AH,則AC=CG,此時(shí)x=9綜上,當(dāng)x=9或時(shí),AGH是等腰三角形2. (2011山東德州19,8分)如圖 AB=AC,C
35、DAB于D,BEAC于E,BE與CD相交于點(diǎn)O(1)求證AD=AE;(2) 連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由ABCEDO【答案】ABECDO(1)證明:在ACD與ABE中,A=A,ADC=AEB=90°,AB=AC, ACDABE 3分 AD=AE 4分(2) 互相垂直 5分在RtADO與AEO中,OA=OA,AD=AE, ADOAEO 6分 DAO=EAO即OA是BAC的平分線 7分 又AB=AC, OABC 8分3. (2011山東日照,23,10分)如圖,已知點(diǎn)D為等腰直角ABC內(nèi)一點(diǎn),CADCBD15°,E為AD延長(zhǎng)線上的一點(diǎn),且CECA(1)求
36、證:DE平分BDC;(2)若點(diǎn)M在DE上,且DC=DM,求證: ME=BD 【答案】(1)在等腰直角ABC中,CAD=CBD=15o,BAD=ABD=45o-15o=30o,BD=AD,BDCADC, DCA=DCB=45o由BDM=ABD+BAD=30o+30o=60o,EDC=DAC+DCA=15o+45o=60o,BDM=EDC,DE平分BDC; (2)如圖,連接MC,DC=DM,且MDC=60°,MDC是等邊三角形,即CM=CD 又EMC=180°-DMC=180°-60°=120°,ADC=180°-MDC=180°
37、;-60°=120°,EMC=ADC 又CE=CA,DAC=CEM=15°,ADCEMC,ME=AD=DB 4. (2011湖北鄂州,18,7分)如圖,在等腰三角形ABC中,ABC=90°,D為AC邊上中點(diǎn),過D點(diǎn)作DEDF,交AB于E,交BC于F,若AE=4,F(xiàn)C=3,求EF長(zhǎng) 第18題圖BAEDFC【答案】連結(jié)BD,證BEDCFD和AEDBFD,求得EF=55. (2011浙江衢州,23,10分)是一張等腰直角三角形紙板,.要在這張紙板中剪出一個(gè)盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積更大?
38、請(qǐng)說明理由. (第23題)(第23題圖1)圖1中甲種剪法稱為第1次剪取,記所得的正方形面積為;按照甲種剪法,在余下的中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第2次剪取,并記這兩個(gè)正方形面積和為(如圖2),則 ;再在余下的四個(gè)三角形中,用同樣的方法分別剪取正方形,得到四個(gè)相同的正方形,稱為第3次剪取,并記這四個(gè)正方形的面積和為(如圖3);繼續(xù)操作下去則第10次剪取時(shí), . 求第10次剪取后,余下的所有小三角形的面積和.【答案】(1)解法1:如圖甲,由題意得.如圖乙,設(shè),則由題意,得又甲種剪法所得的正方形的面積更大說明:圖甲可另解為:由題意得點(diǎn)D、E、F分別為的中點(diǎn),解法2:如圖甲,由題意得
39、如圖乙,設(shè)甲種剪法所得的正方形的面積更大(2)(3)(3)解法1:探索規(guī)律可知:剩余三角形的面積和為:解法2:由題意可知,第一次剪取后剩余三角形面積和為第二次剪取后剩余三角形面積和為第三次剪取后剩余三角形面積和為第十次剪取后剩余三角形面積和為6. (2011浙江紹興,23,12分)數(shù)學(xué)課上,李老師出示了如下框中的題目.小敏與同桌小聰討論后,進(jìn)行了如下解答:(1)特殊情況,探索結(jié)論當(dāng)點(diǎn)為的中點(diǎn)時(shí),如圖1,確定線段與的大小關(guān)系,請(qǐng)你直接寫出結(jié)論: (填“>”,“<”或“=”). 第25題圖2第25題圖1(2)特例啟發(fā),解答題目解:題目中,與的大小關(guān)系是: (填“>”,“<”
40、或“=”).理由如下:如圖2,過點(diǎn)作,交于點(diǎn).(請(qǐng)你完成以下解答過程)(3)拓展結(jié)論,設(shè)計(jì)新題在等邊三角形中,點(diǎn)在直線上,點(diǎn)在直線上,且.若的邊長(zhǎng)為1,求的長(zhǎng)(請(qǐng)你直接寫出結(jié)果). 【答案】(1)= .(2)=.方法一:如圖,等邊三角形中,是等邊三角形,又.方法二:在等邊三角形中,而由是正三角形可得 (3)1或3.7. (2011浙江臺(tái)州,23,12分)如圖1,過ABC的頂點(diǎn)A分別做對(duì)邊BC上的高AD和中線AE,點(diǎn)D是垂足,點(diǎn)E是BC中點(diǎn),規(guī)定。特別的,當(dāng)點(diǎn)D重合時(shí),規(guī)定。另外。對(duì)、作類似的規(guī)定。(1)如圖2,已知在RtABC中,A=30º,求、;(2)在每個(gè)小正方形邊長(zhǎng)為1的4
41、215;4方格紙上,畫一個(gè)ABC,使其頂點(diǎn)在格點(diǎn)(格點(diǎn)即每個(gè)小正方形的頂點(diǎn))上,且,面積也為2;(3)判斷下列三個(gè)命題的真假。(真命題打,假命題打×) 若ABC中,則ABC為銳角三角形;( ) 若ABC中,則ABC為直角三角形;( ) 若ABC中,則ABC為鈍角三角形;( )【答案】解:(1)如圖,作CDAB,垂足為D,作中線CE、AF。 =1 RtABC中,CAB=30º, AE=CE=BE ,CEB=60º, CEB是正三角形, CDAB AE=2DE =; =1,=; (2)如圖所示: (3)×;。8. (2011浙江義烏,23,10分)如圖1,在
42、等邊ABC中,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)P是線段DC上的動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)C不重合),連結(jié)BP. 將ABP繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)角(0°180°),得到A1B1P,連結(jié)AA1,射線AA1分別交射線PB、射線B1B于點(diǎn)E、F. (1) 如圖1,當(dāng)0°60°時(shí),在角變化過程中,BEF與AEP始終存在 關(guān)系(填“相似”或“全等”),并說明理由;(2)如圖2,設(shè)ABP= . 當(dāng)60°180°時(shí),在角變化過程中,是否存在BEF與AEP全等?若存在,求出與之間的數(shù)量關(guān)系;若不存在,請(qǐng)說明理由; (3)如圖3,當(dāng)=60°時(shí),點(diǎn)E、F與點(diǎn)B重合.
43、已知AB=4,設(shè)DP=x,A1BB1的面積為S,求S關(guān)于x的函數(shù)關(guān)系圖1圖2圖3PB1FMADOECCBA1PB1FMADOECCBA1PB1ADOCBA1【答案】(1) 相似 由題意得:APA1=BPB1= AP= A1P BP=B1P 則 PAA1 =PBB1 = PBB1 =EBF PAE=EBF 又BEF=AEP BEF AEP(2)存在,理由如下:易得:BEF AEP若要使得BEFAEP,只需要滿足BE=AE即可BAE=ABE BAC=60° BAE=ABE= BAE=ABE 即=2+60° (3)連結(jié)BD,交A1B1于點(diǎn)G,過點(diǎn)A1作A1HAC于點(diǎn)H. PB1A
44、DOCBA1HGB1 A1P=A1PA=60° A1B1AC 由題意得:AP= A1 P A=60° PAA1是等邊三角形A1H=在RtABD中,BD= BG= (0x2)9. (2011廣東株洲,20,6分)如圖, ABC中,AB=AC,A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC(1)求ECD的度數(shù);(2)若CE=5,求BC長(zhǎng)【答案】(1)解法一:DE垂直平分AC,CE=AE,ECD=A=36°. 解法二:DE垂直平分AC,AD=CD,ADE=CDE=90°, 又DE =DE,ADECDE,ECD=A=36°. (2
45、)解法一:AB=AC,A=36°,B=ACB=72°,ECD=36°,BCE=ACB-ECD=36°,BEC=72°=B, BC=EC=5.解法二:AB=AC,A=36°,B=ACB=72°, BEC=A+ECD=72°, BEC=B,BC=EC=5. 10(2011重慶綦江,24,10分)如圖,等邊ABC中,AO是BAC的角平分線,D為AO上一點(diǎn),以CD為一邊且在CD下方作等邊CDE,連結(jié)BE. (1) 求證:ACDBCE; (2) 延長(zhǎng)BE至Q, P為BQ上一點(diǎn),連結(jié)CP、CQ使CPCQ5, 若BC8時(shí),求PQ
46、的長(zhǎng). 【答案】:(1)證明ABC和CDE均為等邊三角形, ACBC , CDCE 且ACBDCE60° ACDDCBDCBBCE60° ACDBCE ACDBCE (2)解:作CHBQ交BQ于H, 則PQ2HQ 在RtBHC中 ,由已知和(1)得CBHCAO30°, CH4 在RtCHQ中,HQ PQ2HQ6 11. (2011江蘇揚(yáng)州,23,10分)已知:如圖,銳角ABC的兩條高BD、CE相交于點(diǎn)O,且OB=OC,(1)求證:ABC是等腰三角形;(2)判斷點(diǎn)O是否在BAC的角平分線上,并說明理由?!敬鸢浮浚?)證明:OB=OC OBC=OCBBD、CE是兩條高
47、 BDC=CEB=90°又BC=CB BDCCEB(AAS)DBC=ECB AB=AC ABC是等腰三角形。 (2)點(diǎn)O是在BAC的角平分線上。連結(jié)AO. BDCCEB DC=EB,OB=OC OD=OE又BDC=CEB=90° AO=AO ADOAEO(HL) DAO=EAO 點(diǎn)O是在BAC的角平分線上。12. (2011廣東省,21,9分)如圖(1),ABC與EFD為等腰直角三角形,AC與DE重合,AB=EF=9,BACDEF90°,固定ABC,將EFD繞點(diǎn)A 順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止.不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)DE、DF(或它們
48、的延長(zhǎng)線)分別交BC(或它的延長(zhǎng)線)于G、H點(diǎn),如圖(2).(1)問:始終與AGC相似的三角形有 及 ;(2)設(shè)CGx,BHy,求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說明理由);(3)問:當(dāng)x為何值時(shí),AGH是等腰三角形?【解】(1)HGA及HAB; (2)由(1)可知AGCHAB,即,所以,(3)當(dāng)CG時(shí),GAC=HHAC,ACCHAGAC,AGGH又AHAG,AHGH此時(shí),AGH不可能是等腰三角形;當(dāng)CG=時(shí),G為BC的中點(diǎn),H與C重合,AGH是等腰三角形;此時(shí),GC=,即x=當(dāng)CG時(shí),由(1)可知AGCHGA所以,若AGH必是等腰三角形,只可能存在AG=AH若AG=AH,則AC=CG
49、,此時(shí)x=9綜上,當(dāng)x=9或時(shí),AGH是等腰三角形13. (2011湖北黃岡,18,7分)如圖,在等腰三角形ABC中,ABC=90°,D為AC邊上中點(diǎn),過D點(diǎn)作DEDF,交AB于E,交BC于F,若AE=4,F(xiàn)C=3,求EF長(zhǎng) 第18題圖BAEDFC【答案】連結(jié)BD,證BEDCFD和AEDBFD,求得EF=514. (2011湖北襄陽(yáng),21,6分)如圖6,點(diǎn)D,E在ABC的邊BC上,連接AD,AE. ABAC;ADAE;BDCE.以此三個(gè)等式中的兩個(gè)作為命題的題設(shè),另一個(gè)作為命題的結(jié)論,構(gòu)成三個(gè)命題:;.(1)以上三個(gè)命題是真命題的為(直接作答) ;(2)請(qǐng)選擇一個(gè)真命題進(jìn)行證明(先寫出所選命題,然后證明).圖6【答案】(1);.3分(2)(略)6分15. (2011山東泰安,29 ,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《國(guó)際貨運(yùn)代理》題集
- 《規(guī)范漢字書寫傳承中華文化之美》班會(huì)教案3篇
- 3.4.1 二次函數(shù)y=ax2+k與y=a(x-h)2的圖象與性質(zhì) 同步練習(xí)
- 【人教】期末模擬卷01【九年級(jí)上下冊(cè)】
- 專項(xiàng)24-弧、弦、角、距的關(guān)系-重難點(diǎn)題型
- 特殊作業(yè)票管理制度
- 語(yǔ)法專題十六 主謂一致【考點(diǎn)精講精練】-2023年中考語(yǔ)法一點(diǎn)通(學(xué)生版)
- 青花瓷的教案8篇
- 新生軍訓(xùn)心得體會(huì)
- 暑假自我總結(jié)
- 國(guó)開2024年秋《經(jīng)濟(jì)法學(xué)》計(jì)分作業(yè)1-4答案形考任務(wù)
- 知道網(wǎng)課智慧《設(shè)計(jì)創(chuàng)新思維》測(cè)試答案
- 生涯發(fā)展報(bào)告 (修改)
- 303093 池國(guó)華 《內(nèi)部控制與風(fēng)險(xiǎn)管理(第3版)》思考題和案例分析答案
- (自己編)絲網(wǎng)除沫器計(jì)算
- 應(yīng)用數(shù)理統(tǒng)計(jì)基礎(chǔ)答案 莊楚強(qiáng)
- 5G網(wǎng)絡(luò)優(yōu)化測(cè)試方法
- 代理申辦原產(chǎn)地證委托書
- 全套企業(yè)管理流程(文字版)
- ICC國(guó)際商會(huì)NCNDA和IMFPA中英文對(duì)照可編輯
- 關(guān)于房屋建筑和市政工程界定文件
評(píng)論
0/150
提交評(píng)論