2012屆高考數學第一輪函數復習課件9_第1頁
2012屆高考數學第一輪函數復習課件9_第2頁
2012屆高考數學第一輪函數復習課件9_第3頁
2012屆高考數學第一輪函數復習課件9_第4頁
2012屆高考數學第一輪函數復習課件9_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 第8課時函數與方程 1函數的零點 (1)函數零點的定義 函數yf(x)的圖像與橫軸的交點的稱為這個函數的零點 (2)幾個等價關系 方程f(x)0有實數根函數yf(x)的圖象與 有交點函數yf(x)有 橫坐標x軸零點 【思考探究】函數的零點是函數yf(x)與x軸的交點嗎? 提示:函數的零點不是函數yf(x)與x軸的交點,而是yf(x)與x軸交點的橫坐標,也就是說函數的零點不是一個點,而是一個實數 (3)函數零點的判定(零點存在性定理) 如果函數yf(x)在區(qū)間a,b上的圖象是連續(xù)不斷的一條曲線,并且有,那么函數yf(x)在區(qū)間(a,b)內有零點,即存在c(a,b),使得,這個 也就是f(x)0

2、的根f(a)f(b)0f(c)0c 3.二分法的定義 對于在區(qū)間a,b上連續(xù)不斷且的函數yf(x),通過不斷地把函數f(x)的零點所在的區(qū)間,使區(qū)間的兩個端點逐步逼近,進而得到零點近似值的方法叫做二分法 f(a)f(b)0一分為二零點 1若函數f(x)axb(b0)有一個零點3,那么函數g(x)bx23ax的零點是() A0 B1 C0,1 D0,1 解析:f(x)axb(b0)有一個零點為3, 3ab0,3ab.令g(x)0得bx23ax0, 即bx2bx0,x0或x1. g(x)的零點為0或1. 答案:C 2下列函數圖象與x軸均有交點,其中不宜用二分法求交點橫坐標的是() 解析:B中x0左

3、右兩邊的函數值均大于零,不適合二分法求零點的條件 答案:B答案:B 解析:由f(2)f(3)0可知 答案:(2,3) 函數零點個數的判定的幾種方法 (1)直接求零點:令f(x)0,如果能求出解,則有幾個解就有幾個零點 (2)零點存在性定理:利用該定理不僅要求函數在a,b上是連續(xù)的曲線,且f(a)f(b)0.還必須結合函數的圖象和性質(如單調性)才能確定函數有多少個零點 (3)畫兩個函數圖象,看其交點的個數有幾個,其中交點的橫坐標有幾個不同的值,就有幾個不同的零點 【變式訓練】1.(2010天津卷)函數f(x)2x3x的零點所在的一個區(qū)間是() A(2,1)B(1,0) C(0,1) D(1,2

4、) 解析:f(x)2xln 230,f(x)2x3x在R上是增函數而f(2)2260,f(1)2130,f(0)2010,f(1)2350,f(2)226100,f(1)f(0)0.故函數f(x)在區(qū)間(1,0)上有零點 答案:B 用二分法求函數零點近似值的步驟須注意的問題 (1)第一步中要使:區(qū)間長度盡量小;f(a),f(b)的值比較容易計算且f(a)f(b)0. (2)根據函數的零點與相應方程根的關系,求函數的零點與求相應方程的根是等價的對于求方程f(x)g(x)的根,可以構造函數F(x)f(x)g(x),函數F(x)的零點即為方程f(x)g(x)的根 若函數f(x)x3x22x2的一個正

5、數零點附近的函數值用二分法計算,其參考數據如下: 那么方程x3x22x20的一個近似根(精確度0.1)為_ 解析:通過參考數據可以得到:f(1.406 25)0.0540,f(1.437 5)0.1620,從而易知x01.406 25. 答案:1.406 25f(1)2f(1.5)0.625f(1.25)0.984f(1.375)0.260f(1.437 5)0.162f(1.406 25)0.054 【變式訓練】2.用二分法研究函數f(x)x33x1的零點時,第一次經計算f(0)0,f(0.5)0,可得其中一個零點x0_,第二次應計算_,這時可判斷x0_. 解析:由二分法知x0(0,0.5)

6、,取x10.25, 這時f(0.25)0.25330.2510,故x0(0.25,0.5) 答案:(0,0.5)f(0.25)(0.25,0.5) 二次函數零點分布問題,即一元二次方程根的分布問題,解題的關鍵是結合圖象把根的分布情況轉化為不等式組或方程 m為何值時,f(x)x22mx3m4. (1)有且僅有一個零點;(2)有兩個零點且均比1大 解析:(1)f(x)x22mx3m4有且僅有一個零點方程f(x)0有兩個相等實根0,即4m24(3m4)0,即m23m40, m4或m1. 答案:C 解析:當x0時,由f(x)x22x30,得x11(舍去),x23;當x0時,由f(x)2ln x0,得xe2,所以函數f(x)的零點個數為2,故選C. 答案:C 2(2010天津卷)函數f(x)exx2的零點所在的一個區(qū)間是() A(2,1) B(1,0) C(0,1) D(1,2) 解析:f(x)ex10, f(x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論