2013年高中數(shù)學(xué)《1.1.1算法的概念》教案 新人教A版必修3_第1頁
2013年高中數(shù)學(xué)《1.1.1算法的概念》教案 新人教A版必修3_第2頁
2013年高中數(shù)學(xué)《1.1.1算法的概念》教案 新人教A版必修3_第3頁
2013年高中數(shù)學(xué)《1.1.1算法的概念》教案 新人教A版必修3_第4頁
2013年高中數(shù)學(xué)《1.1.1算法的概念》教案 新人教A版必修3_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1.1 算法與程序框圖1.1.1 算法的概念整體設(shè)計(jì)教學(xué)分析 算法在中學(xué)數(shù)學(xué)課程中是一個(gè)新的概念,但沒有一個(gè)精確化的定義,教科書只對(duì)它作了如下描述:“在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確有限的步驟.”為了讓學(xué)生更好理解這一概念,教科書先從分析一個(gè)具體的二元一次方程組的求解過程出發(fā),歸納出了二元一次方程組的求解步驟,這些步驟就構(gòu)成了解二元一次方程組的算法.教學(xué)中,應(yīng)從學(xué)生非常熟悉的例子引出算法,再通過例題加以鞏固.三維目標(biāo)1.正確理解算法的概念,掌握算法的基本特點(diǎn).2.通過例題教學(xué),使學(xué)生體會(huì)設(shè)計(jì)算法的基本思路.3.通過有趣的實(shí)例使學(xué)生了解算法這一概念的同時(shí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的

2、興趣.重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):算法的含義及應(yīng)用.教學(xué)難點(diǎn):寫出解決一類問題的算法.課時(shí)安排1課時(shí)教學(xué)過程導(dǎo)入新課 思路1(情境導(dǎo)入) 一個(gè)人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個(gè)人和兩只動(dòng)物,沒有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量狼就會(huì)吃羚羊.該人如何將動(dòng)物轉(zhuǎn)移過河?請(qǐng)同學(xué)們寫出解決問題的步驟,解決這一問題將要用到我們今天學(xué)習(xí)的內(nèi)容算法. 思路2(情境導(dǎo)入) 大家都看過趙本山與宋丹丹演的小品吧,宋丹丹說了一個(gè)笑話,把大象裝進(jìn)冰箱總共分幾步?答案:分三步,第一步:把冰箱門打開;第二步:把大象裝進(jìn)去;第三步:把冰箱門關(guān)上.上述步驟構(gòu)成了把大象裝進(jìn)冰箱的算法,今天我們開始學(xué)習(xí)算法的概念

3、. 思路3(直接導(dǎo)入) 算法不僅是數(shù)學(xué)及其應(yīng)用的重要組成部分,也是計(jì)算機(jī)科學(xué)的重要基礎(chǔ).在現(xiàn)代社會(huì)里,計(jì)算機(jī)已成為人們?nèi)粘I詈凸ぷ髦胁豢扇鄙俚墓ぞ?聽音樂、看電影、玩游戲、打字、畫卡通畫、處理數(shù)據(jù),計(jì)算機(jī)是怎樣工作的呢?要想弄清楚這個(gè)問題,算法的學(xué)習(xí)是一個(gè)開始.推進(jìn)新課新知探究提出問題(1)解二元一次方程組有幾種方法?(2)結(jié)合教材實(shí)例總結(jié)用加減消元法解二元一次方程組的步驟.(3)結(jié)合教材實(shí)例總結(jié)用代入消元法解二元一次方程組的步驟.(4)請(qǐng)寫出解一般二元一次方程組的步驟.(5)根據(jù)上述實(shí)例談?wù)勀銓?duì)算法的理解.(6)請(qǐng)同學(xué)們總結(jié)算法的特征.(7)請(qǐng)思考我們學(xué)習(xí)算法的意義.討論結(jié)果:(1)代入消

4、元法和加減消元法.(2)回顧二元一次方程組的求解過程,我們可以歸納出以下步驟:第一步,+×2,得5x=1.第二步,解,得x=.第三步,-×2,得5y=3.第四步,解,得y=.第五步,得到方程組的解為(3)用代入消元法解二元一次方程組我們可以歸納出以下步驟:第一步,由得x=2y1.第二步,把代入,得2(2y1)+y=1.第三步,解得y=.第四步,把代入,得x=2×1=.第五步,得到方程組的解為(4)對(duì)于一般的二元一次方程組 其中a1b2a2b10,可以寫出類似的求解步驟: 第一步,×b2-×b1,得 (a1b2a2b1)x=b2c1b1c2. 第

5、二步,解,得x=. 第三步,×a1-×a2,得(a1b2a2b1)y=a1c2a2c1. 第四步,解,得y=. 第五步,得到方程組的解為(5)算法的定義:廣義的算法是指完成某項(xiàng)工作的方法和步驟,那么我們可以說洗衣機(jī)的使用說明書是操作洗衣機(jī)的算法,菜譜是做菜的算法等等. 在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確有限的步驟. 現(xiàn)在,算法通??梢跃幊捎?jì)算機(jī)程序,讓計(jì)算機(jī)執(zhí)行并解決問題.(6)算法的特征:確定性:算法的每一步都應(yīng)當(dāng)做到準(zhǔn)確無誤、不重不漏.“不重”是指不是可有可無的,甚至無用的步驟,“不漏” 是指缺少哪一步都無法完成任務(wù).邏輯性:算法從開始的“第一步”直

6、到“最后一步”之間做到環(huán)環(huán)相扣,分工明確,“前一步”是“后一步”的前提, “后一步”是“前一步”的繼續(xù).有窮性:算法要有明確的開始和結(jié)束,當(dāng)?shù)竭_(dá)終止步驟時(shí)所要解決的問題必須有明確的結(jié)果,也就是說必須在有限步內(nèi)完成任務(wù),不能無限制地持續(xù)進(jìn)行.(7)在解決某些問題時(shí),需要設(shè)計(jì)出一系列可操作或可計(jì)算的步驟來解決問題,這些步驟稱為解決這些問題的算法.也就是說,算法實(shí)際上就是解決問題的一種程序性方法.算法一般是機(jī)械的,有時(shí)需進(jìn)行大量重復(fù)的計(jì)算,它的優(yōu)點(diǎn)是一種通法,只要按部就班地去做,總能得到結(jié)果.因此算法是計(jì)算科學(xué)的重要基礎(chǔ).應(yīng)用示例思路1例1 (1)設(shè)計(jì)一個(gè)算法,判斷7是否為質(zhì)數(shù).(2)設(shè)計(jì)一個(gè)算法,

7、判斷35是否為質(zhì)數(shù).算法分析:(1)根據(jù)質(zhì)數(shù)的定義,可以這樣判斷:依次用26除7,如果它們中有一個(gè)能整除7,則7不是質(zhì)數(shù),否則7是質(zhì)數(shù).算法如下:(1)第一步,用2除7,得到余數(shù)1.因?yàn)橛鄶?shù)不為0,所以2不能整除7.第二步,用3除7,得到余數(shù)1.因?yàn)橛鄶?shù)不為0,所以3不能整除7.第三步,用4除7,得到余數(shù)3.因?yàn)橛鄶?shù)不為0,所以4不能整除7.第四步,用5除7,得到余數(shù)2.因?yàn)橛鄶?shù)不為0,所以5不能整除7.第五步,用6除7,得到余數(shù)1.因?yàn)橛鄶?shù)不為0,所以6不能整除7.因此,7是質(zhì)數(shù).(2)類似地,可寫出“判斷35是否為質(zhì)數(shù)”的算法:第一步,用2除35,得到余數(shù)1.因?yàn)橛鄶?shù)不為0,所以2不能整除

8、35.第二步,用3除35,得到余數(shù)2.因?yàn)橛鄶?shù)不為0,所以3不能整除35.第三步,用4除35,得到余數(shù)3.因?yàn)橛鄶?shù)不為0,所以4不能整除35.第四步,用5除35,得到余數(shù)0.因?yàn)橛鄶?shù)為0,所以5能整除35.因此,35不是質(zhì)數(shù).點(diǎn)評(píng):上述算法有很大的局限性,用上述算法判斷35是否為質(zhì)數(shù)還可以,如果判斷1997是否為質(zhì)數(shù)就麻煩了,因此,我們需要尋找普適性的算法步驟.變式訓(xùn)練 請(qǐng)寫出判斷n(n>2)是否為質(zhì)數(shù)的算法.分析:對(duì)于任意的整數(shù)n(n>2),若用i表示2(n-1)中的任意整數(shù),則“判斷n是否為質(zhì)數(shù)”的算法包含下面的重復(fù)操作:用i除n,得到余數(shù)r.判斷余數(shù)r是否為0,若是,則不是質(zhì)

9、數(shù);否則,將i的值增加1,再執(zhí)行同樣的操作. 這個(gè)操作一直要進(jìn)行到i的值等于(n-1)為止. 算法如下:第一步,給定大于2的整數(shù)n. 第二步,令i=2. 第三步,用i除n,得到余數(shù)r. 第四步,判斷“r=0”是否成立.若是,則n不是質(zhì)數(shù),結(jié)束算法;否則,將i的值增加1,仍用i表示. 第五步,判斷“i(n-1)”是否成立.若是,則n是質(zhì)數(shù),結(jié)束算法;否則,返回第三步.例2 寫出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,則方程x2-2=0 (x>0)的解就是函數(shù)f(x)的零點(diǎn). “二分法”的基本思想是:把函數(shù)f(x)的零點(diǎn)所在的區(qū)間a,b(滿

10、足f(a)·f(b)<0)“一分為二”,得到a,m和m,b.根據(jù)“f(a)·f(m)<0”是否成立,取出零點(diǎn)所在的區(qū)間a,m或m,b,仍記為a,b.對(duì)所得的區(qū)間a,b重復(fù)上述步驟,直到包含零點(diǎn)的區(qū)間a,b“足夠小”,則a,b內(nèi)的數(shù)可以作為方程的近似解.解:第一步,令f(x)=x2-2,給定精確度d.第二步,確定區(qū)間a,b,滿足f(a)·f(b)<0.第三步,取區(qū)間中點(diǎn)m=.第四步,若f(a)·f(m)<0,則含零點(diǎn)的區(qū)間為a,m;否則,含零點(diǎn)的區(qū)間為m,b.將新得到的含零點(diǎn)的區(qū)間仍記為a,b.第五步,判斷a,b的長度是否小于d或f

11、(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.當(dāng)d=0.005時(shí),按照以上算法,可以得到下表.ab|a-b|12111.50.51.251.50.251.3751.50.1251.3751.437 50.062 51.406 251.437 50.031 251.406 251.421 8750.015 6251.414 062 51.421 8750.007 812 51.414 062 51.417 968 750.003 906 25 于是,開區(qū)間(1.414 062 5,1.417 968 75)中的實(shí)數(shù)都是當(dāng)精確度為0.005時(shí)的原方程的近似解.實(shí)際上,上述步驟也是求

12、的近似值的一個(gè)算法.點(diǎn)評(píng):算法一般是機(jī)械的,有時(shí)需要進(jìn)行大量的重復(fù)計(jì)算,只要按部就班地去做,總能算出結(jié)果,通常把算法過程稱為“數(shù)學(xué)機(jī)械化”.數(shù)學(xué)機(jī)械化的最大優(yōu)點(diǎn)是它可以借助計(jì)算機(jī)來完成,實(shí)際上處理任何問題都需要算法.如:中國象棋有中國象棋的棋譜、走法、勝負(fù)的評(píng)判準(zhǔn)則;而國際象棋有國際象棋的棋譜、走法、勝負(fù)的評(píng)判準(zhǔn)則;再比如申請(qǐng)出國有一系列的先后手續(xù),購買物品也有相關(guān)的手續(xù)思路2例1 一個(gè)人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個(gè)人和兩只動(dòng)物,沒有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量就會(huì)吃羚羊.該人如何將動(dòng)物轉(zhuǎn)移過河?請(qǐng)?jiān)O(shè)計(jì)算法.分析:任何動(dòng)物同船不用考慮動(dòng)物的爭(zhēng)斗但需考慮承載的

13、數(shù)量,還應(yīng)考慮到兩岸的動(dòng)物都得保證狼的數(shù)量要小于羚羊的數(shù)量,故在算法的構(gòu)造過程中盡可能保證船里面有狼,這樣才能使得兩岸的羚羊數(shù)量占到優(yōu)勢(shì).解:具體算法如下:算法步驟:第一步:人帶兩只狼過河,并自己返回.第二步:人帶一只狼過河,自己返回.第三步:人帶兩只羚羊過河,并帶兩只狼返回.第四步:人帶一只羊過河,自己返回.第五步:人帶兩只狼過河.點(diǎn)評(píng):算法是解決某一類問題的精確描述,有些問題使用形式化、程序化的刻畫是最恰當(dāng)?shù)?這就要求我們?cè)趯懰惴〞r(shí)應(yīng)精練、簡(jiǎn)練、清晰地表達(dá),要善于分析任何可能出現(xiàn)的情況,體現(xiàn)思維的嚴(yán)密性和完整性.本題型解決問題的算法中某些步驟重復(fù)進(jìn)行多次才能解決,在現(xiàn)實(shí)生活中,很多較復(fù)雜的

14、情境經(jīng)常遇到這樣的問題,設(shè)計(jì)算法的時(shí)候,如果能夠合適地利用某些步驟的重復(fù),不但可以使得問題變得簡(jiǎn)單,而且可以提高工作效率.例2 喝一杯茶需要這樣幾個(gè)步驟:洗刷水壺、燒水、洗刷茶具、沏茶問:如何安排這幾個(gè)步驟?并給出兩種算法,再加以比較分析:本例主要為加深對(duì)算法概念的理解,可結(jié)合生活常識(shí)對(duì)問題進(jìn)行分析,然后解決問題解:算法一:第一步,洗刷水壺.第二步,燒水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壺.第二步,燒水,燒水的過程當(dāng)中洗刷茶具.第三步,沏茶.點(diǎn)評(píng):解決一個(gè)問題可有多個(gè)算法,可以選擇其中最優(yōu)的、最簡(jiǎn)單的、步驟盡量少的算法上面的兩種算法都符合題意,但是算法二運(yùn)用了統(tǒng)籌方法的原

15、理,因此這個(gè)算法要比算法一更科學(xué)例3 寫出通過尺軌作圖確定線段AB一個(gè)5等分點(diǎn)的算法.分析:我們借助于平行線定理,把位置的比例關(guān)系變成已知的比例關(guān)系,只要按照規(guī)則一步一步去做就能完成任務(wù).解:算法分析:第一步,從已知線段的左端點(diǎn)A出發(fā),任意作一條與AB不平行的射線AP.第二步,在射線上任取一個(gè)不同于端點(diǎn)A的點(diǎn)C,得到線段AC.第三步,在射線上沿AC的方向截取線段CE=AC.第四步,在射線上沿AC的方向截取線段EF=AC.第五步,在射線上沿AC的方向截取線段FG=AC.第六步,在射線上沿AC的方向截取線段GD=AC,那么線段AD=5AC.第七步,連結(jié)DB.第八步,過C作BD的平行線,交線段AB于

16、M,這樣點(diǎn)M就是線段AB的一個(gè)5等分點(diǎn).點(diǎn)評(píng):用算法解決幾何問題能很好地訓(xùn)練學(xué)生的思維能力,并能幫助我們得到解決幾何問題的一般方法,可謂一舉多得,應(yīng)多加訓(xùn)練.知能訓(xùn)練 設(shè)計(jì)算法判斷一元二次方程ax2+bx+c=0是否有實(shí)數(shù)根.解:算法步驟如下: 第一步,輸入一元二次方程的系數(shù):a,b,c.第二步,計(jì)算=b24ac的值.第三步,判斷0是否成立.若0成立,輸出“方程有實(shí)根”;否則輸出“方程無實(shí)根”,結(jié)束算法.點(diǎn)評(píng):用算法解決問題的特點(diǎn)是:具有很好的程序性,是一種通法.并且具有確定性、邏輯性、有窮性.讓我們結(jié)合例題仔細(xì)體會(huì)算法的特點(diǎn).拓展提升 中國網(wǎng)通規(guī)定:撥打市內(nèi)電話時(shí),如果不超過3分鐘,則收取話費(fèi)0.22元;如果通話時(shí)間超過3分鐘,則超出部分按每分鐘0.1元收取通話費(fèi),不足一分鐘按一分鐘計(jì)算.設(shè)通話時(shí)間為t(分鐘),通話費(fèi)用y(元),如何設(shè)計(jì)一個(gè)程序,計(jì)算通話的費(fèi)用.解:算法分析:數(shù)學(xué)模型實(shí)際上為:y關(guān)于t的分段函數(shù).關(guān)系式如下:y=其中t3表示取不大于t3的整數(shù)部分.算法步驟如下:第一步,輸入通話時(shí)間t.第二步,如果t3,那么y=0.22;否則判斷tZ 是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論