版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、高等數(shù)學 考研公式大全導數(shù)公式:基本積分表:三角函數(shù)的有理式積分:一些初等函數(shù): 兩個重要極限:三角函數(shù)公式:·誘導公式: 函數(shù)角Asincostgctg-sincos-tg-ctg90°-cossinctgtg90°+cos-sin-ctg-tg180°-sin-cos-tg-ctg180°+-sin-costgctg270°-cos-sinctgtg270°+-cossin-ctg-tg360°-sincos-tg-ctg360°+sincostgctg·和差角公式: ·和差化積公
2、式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函數(shù)性質(zhì):高階導數(shù)公式萊布尼茲(Leibniz)公式:中值定理與導數(shù)應用:曲率:定積分的近似計算:定積分應用相關(guān)公式:空間解析幾何和向量代數(shù):多元函數(shù)微分法及應用微分法在幾何上的應用:方向?qū)?shù)與梯度:多元函數(shù)的極值及其求法:重積分及其應用:柱面坐標和球面坐標:曲線積分:曲面積分:高斯公式:斯托克斯公式曲線積分與曲面積分的關(guān)系:常數(shù)項級數(shù):級數(shù)審斂法:絕對收斂與條件收斂:冪級數(shù):函數(shù)展開成冪級數(shù):一些函數(shù)展開成冪級數(shù):歐拉公式:三角級數(shù):傅立葉級數(shù):周期為的周期函數(shù)的傅立葉級數(shù):微分方程
3、的相關(guān)概念:一階線性微分方程:全微分方程:二階微分方程:二階常系數(shù)齊次線性微分方程及其解法:(*)式的通解兩個不相等實根兩個相等實根一對共軛復根二階常系數(shù)非齊次線性微分方程高等數(shù)學 三角函數(shù)篇·平方關(guān)系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() ·積的關(guān)系: sin=tan*cos cos=cot*sin tan=sin*sec cot=cos*csc sec=tan*csc csc=sec*cot ·倒數(shù)關(guān)系: tan·cot=1 sin·csc=1 cos·sec=1 直角三
4、角形ABC中, 角A的正弦值就等于角A的對邊比斜邊, 余弦等于角A的鄰邊比斜邊正切等于對邊比鄰邊, ·三角函數(shù)恒等變形公式 ·兩角和與差的三角函數(shù): cos(+)=cos·cos-sin·sin cos(-)=cos·cos+sin·sin sin(±)=sin·cos±cos·sin tan(+)=(tan+tan)/(1-tan·tan) tan(-)=(tan-tan)/(1+tan·tan) ·三角和的三角函數(shù): sin(+)=sin·cos
5、83;cos+cos·sin·cos+cos·cos·sin-sin·sin·sin cos(+)=cos·cos·cos-cos·sin·sin-sin·cos·sin-sin·sin·cos tan(+)=(tan+tan+tan-tan·tan·tan)/(1-tan·tan-tan·tan-tan·tan) ·輔助角公式: Asin+Bcos=(A2+B2)(1/2)sin(+t),其中
6、sint=B/(A2+B2)(1/2) cost=A/(A2+B2)(1/2) tant=B/A Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B ·倍角公式: sin(2)=2sin·cos=2/(tan+cot) cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2() tan(2)=2tan/1-tan2() ·三倍角公式: sin(3)=3sin-4sin3() cos(3)=4cos3()-3cos ·半角公式: sin(/2)=±(1-cos)/2) cos(/2)=±(
7、1+cos)/2) tan(/2)=±(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin ·降冪公式 sin2()=(1-cos(2)/2=versin(2)/2 cos2()=(1+cos(2)/2=covers(2)/2 tan2()=(1-cos(2)/(1+cos(2) ·萬能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) ·積化和差公式: sin·cos=(1/2)sin(+)+sin(-) cos&
8、#183;sin=(1/2)sin(+)-sin(-) cos·cos=(1/2)cos(+)+cos(-) sin·sin=-(1/2)cos(+)-cos(-) ·和差化積公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 ·推導公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=(sin/2+cos/2)2
9、·其他: sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函數(shù)的角度換算公式一:設為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二:設為任意角,+的三角函數(shù)值與的三角函數(shù)值之間的
10、關(guān)系: sin()sin cos()cos tan()tan cot()cot 公式三:任意角與 -的三角函數(shù)值之間的關(guān)系: sin()sin cos()cos tan()tan cot()cot 公式四:利用公式二和公式三可以得到-與的三角函數(shù)值之間的關(guān)系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-與的三角函數(shù)值之間的關(guān)系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2±及3/2±與的三角函數(shù)值之間的關(guān)系: sin(/2)coscos(/2)sinta
11、n(/2)cotcot(/2)tansin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tan(以上kZ) 部分高等內(nèi)容 :·高等代數(shù)中三角函數(shù)的指數(shù)表示(由泰勒級數(shù)易得): sinx=e(ix)-e(-ix)/(2i) cosx=e(ix)+e(-ix)/2 tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix) 泰勒展開有無窮級數(shù),ez=exp(z)1z/1!z2/2!z3/3!z4/4!zn/n! 此時三角函數(shù)定義域已推廣至整個復數(shù)集。 ·三角函數(shù)作為微分方程的解: 對于微分方程組 y=-y''y=y'''',有通解Q,可證明 Q=Asinx+Bcosx,因此也可以從此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024窯爐施工項目環(huán)保驗收與排放達標合同3篇
- 二零二五版民用爆破工程噪聲與振動控制合同3篇
- 2025年度高新技術(shù)產(chǎn)業(yè)發(fā)展基金擔保合同范本3篇
- 2025年蓄水池施工監(jiān)理與施工承包一體化合同3篇
- 2025年度現(xiàn)代農(nóng)業(yè)示范區(qū)除草與智能化管理合同3篇
- 二零二五版鈑金展柜品牌授權(quán)與區(qū)域代理合同3篇
- 2025版臨時工勞動權(quán)益保障及就業(yè)援助服務合同2篇
- 2025年智能倉儲車間承包服務合同4篇
- 2025年度新能源車輛質(zhì)押融資合同4篇
- 2025年度餐飲業(yè)原材料配送中心租賃合同3篇
- 第7課《中華民族一家親》(第一課時)(說課稿)2024-2025學年統(tǒng)編版道德與法治五年級上冊
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- 急診科十大護理課件
- 山東省濟寧市2023-2024學年高一上學期1月期末物理試題(解析版)
- GB/T 44888-2024政務服務大廳智能化建設指南
- 2025年上半年河南鄭州滎陽市招聘第二批政務輔助人員211人筆試重點基礎提升(共500題)附帶答案詳解
- 山東省濟南市歷城區(qū)2024-2025學年七年級上學期期末數(shù)學模擬試題(無答案)
- 國家重點風景名勝區(qū)登山健身步道建設項目可行性研究報告
- 投資計劃書模板計劃方案
- 《接觸網(wǎng)施工》課件 3.4.2 隧道內(nèi)腕臂安裝
- 2024-2025學年九年級語文上學期第三次月考模擬卷(統(tǒng)編版)
評論
0/150
提交評論