




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、三角形的中位線說課教案單 位:葉縣昆陽鎮(zhèn)中學姓 名:韓鳳英日 期:2015年4月三角形的中位線說課稿一、教材分析1、教材的地位與作用三角形的中位線是北師大版八年級下冊第六章第三節(jié),三角形中位線是繼三角形的中線、高線、角平分線后的第四種重要線段。三角形中位線定理為證明直線的平行和線段的倍分關系提供了新的方法和依據(jù),也是以后研究梯形中位線的基礎。三角形中位線定理所顯示的特點既有線段的位置關系又有線段的數(shù)量關系,因此對實際問題可進行定性和定量的描述,在生活中有著廣泛的應用。2、教學目標基于學生的實際情況、教材特點和課標要求,我特制定以下教學目標:(1).知識技能了解三角形中位線的概念。理解三角形中位
2、線定理,并能運用它進行有關的論證和計算。(2).數(shù)學思考在教學活動中讓學生體會轉化的數(shù)學思想,培養(yǎng)學生合情推理和演繹推理的能力。(3).問題解決讓學生通過解決簡單的實際問題逐步培養(yǎng)學生的應用能力和創(chuàng)新意識,經歷分析問題、解決問題的過程、掌握分析問題和解決問題的方法。(4).情感態(tài)度通過創(chuàng)設問題情景,激發(fā)學生的學習熱情和興趣;在教學活動中,體驗數(shù)學活動充滿探索性,培養(yǎng)學生的合作精神。3.教學重難點根據(jù)教學目標,結合學生特點我制訂了教學重點和難點:【重點】:三角形中位線定理的證明;【難點】:三角形中位線定理的應用。二、學情分析本節(jié)課是在學生學習了全等三角形、平行線、等腰三角形、直角三角形、平行四邊
3、形之后,學生已經有了一定的幾何基礎和邏輯思維能力,但是在應用能力方面還需要進一步培養(yǎng),在合作交流意識方面,有待加強。三、教法學法分析根據(jù)學生特點,為了完成本節(jié)教學目標,突出重點,突破難點,我采取“師導生探,綜合訓練”的教學方法,給學生提供更多的活動機會,體現(xiàn)了教師是教學過程中的引導者、組織者、合作者。為了讓學生掌握本節(jié)的教學目標,我讓學生經歷“動手操作自主探究合作交流歸納總結鞏固拓展”的過程,多觀察、多動腦、大膽猜、勤鉆研的學習方法。體現(xiàn)了學生在教學活動中的主體地位。四、教學設計 本節(jié)課我設計了五個教學環(huán)節(jié):第一環(huán)節(jié):創(chuàng)設情景,導入課題;第二環(huán)節(jié):師生互動,合作探究;第三環(huán)節(jié):學以致用,鞏固新
4、知;第四環(huán)節(jié):歸納小結、共同提升;第五環(huán)節(jié):分層作業(yè),拓展延伸。第一環(huán)節(jié):創(chuàng)設情景,導入課題新課標指出:教師教學應該以學生的認知發(fā)展水平和已有的經驗為基礎,給學生提供活動機會,因此我設計了兩個問題:課件展示:問題1:如圖A,B兩地被池塘隔開,現(xiàn)要測量AB兩地的距離,給你的工具只有皮尺。操作:先在AB外選一點C,然后測出AC,BC的中點D,E,再測出DE的長,問題就解決了。你知道為什么嗎?設計意圖:創(chuàng)設生活情景, 激發(fā)學習興趣,為引出概念作鋪墊。問題2:你能將一張三角形紙片剪成兩部分,一個是梯形,一個是三角形,并將它們拼成一個平行四邊形。操作:(1)分別取ABC的邊AB,AC的中點D,E,連接D
5、E.(2)沿DE將ABC剪成兩部分,即可把它們拼成一個平行四邊形。(3) 用三角尺判斷,DE與BC的位置關系和數(shù)量關系。說出你的結論。設計意圖:通過有趣的動手操作創(chuàng)設問題情景,激發(fā)學生學習興趣。由此引出課題。為概念的出示、定理的證明作鋪墊。第二環(huán)節(jié):師生互動,合作探究剛才同學們連接的DE就是ABC的中位線。1.定義:連接三角形兩邊中點的線段叫三角形的中位線。強調它與三角形的中線的不同:三角形的中線是三角形的頂點與對邊中點連成的線段。設計意圖:完成教學目標 “了解三角形中位線的概念”剛才同學們通過測量得出:DEBC,DE=1/2BC 這就是三角形中位線的性質。三角形中位線定理:三角形的中位線平行
6、于第三邊,并且等于它的一半。設計意圖:通過學生前期的猜測,測量,初步感知三角形中位線的性質定理。啟發(fā):證明直線的平行有哪些方法?證明線段的倍分有哪些方法?先引導學生寫出已知、求證,小組討論。(給學生充分的合作交流時間,來探討三角形中位線定理的證明。我巡視時發(fā)現(xiàn)有思路清晰的學生演板,我適時加以引導、點撥和評價。)之后師生共同完成證明的過程,板書推理過程。(強調還有其他方法。)已知:如圖6-20(1),DE是ABC的中位線.求證:DEBC,DE=12BC證明:延長DE到F,使DE=EF,連接CF.在ADE和CFE中AE=CE,1=2,DE=FEADECFEA=ECF,AD=CFCFABBD=ADB
7、D=CF四邊形DBCF是平行四邊形DFBC,DF=BCDEBC,DE=12BC設計意圖:通過嚴密的幾何證明將對三角形中位線定理的認識由感性到理性,使學生經歷定理的探究過程,積累數(shù)學活動的經驗,培養(yǎng)學生良好的學習習慣。達到課標要求“探索并證明三角形中位線定理”。第三環(huán)節(jié):學以致用,鞏固新知議一議:順次連結四邊形四條邊的中點,所得的四邊形有什么特點?請證明你的結論。引導學生寫出已知、求證和證明過程。啟發(fā):如何添加輔助線才能應用三角形中位線定理?(給學生充分的獨立思考及合作交流時間,把學生代表作品在展臺上展示,我適時加以引導、點撥和評價)設計意圖:通過探究使學生靈活運用三角形中位線定理解決相關問題,
8、進一步訓練學生嚴謹?shù)倪壿嬐评砟芰Γw會通過添加輔助線將四邊形的有關問題轉化為三角形的問題,培養(yǎng)轉化的數(shù)學思想,突破難點。2.現(xiàn)在同學們知道了三角形中位線性質定理,能用它解決下面三個問題嗎?(1)、情境引入的問題1:如果測得DE = 20m,那么A、B兩點的距離是多少?為什么 ? (2)已知:三角形的各邊分別為6cm,8cm, 10cm,則連結各邊中點所成三角形的周長為 ,面積為 。(3).ABC的三邊分別為a、b、c,AB,BC,AC各邊中點分別為D、E、F,則DEF的周長是 。(4)如圖,在四邊形ABCD中,E、F、G、H分別是AB、CD、AC、BD的中點 。四邊形EGFH是平行四邊形嗎?
9、設計意圖:鞏固三角形中位線定理,同時也兼顧平行四邊形判定定理的熟練運用,進一步培養(yǎng)學生解決問題的能力。.第四環(huán)節(jié):歸納小結,共同提升為了體現(xiàn)學生學習的主體地位,引導學生對知識進行梳理,強化學生對知識的理解和記憶,提高學生歸納總結的能力。我提出了以下三個問題,引起學生思考: (1)這節(jié)課學習了哪些具體內容: (2)應注意哪些概念之間的區(qū)別? (3)你還有什么困惑? 第五環(huán)節(jié):分層作業(yè),拓展延伸 為了“人人都能獲得良好的教育,不同的人在數(shù)學上得到不同的發(fā)展”,我采用了分層作業(yè):A組:習題6.6 2, 3題 B組:習題6.6問題解決第4題C組:(補充作業(yè)) 已知:如圖,ABC中,D是BC邊的中點,A
10、E平分BAC,BEAE于E點,若AB5,AC7,求ED五、板書設計為了既體現(xiàn)知識,又體現(xiàn)思想方法,突出重點,把本節(jié)的知識結構直觀地呈現(xiàn)給學生,我這樣設計板書:三角形的中位線定義: 證明過程: 議一議:定理: 練習: 六、教學評價分析我為了全面了解學生學習的過程和結果,不僅關注學生的知識技能的理解和掌握,而且關注學生情感態(tài)度的發(fā)展;發(fā)揮評價的激勵作用,增強學生自信心.本節(jié)我采用:學生自評,生生互評,老師點評,課堂觀察,課后訪談,作業(yè)分析等評價方法。七、資源拓展分析(一)本節(jié)課的導入也可以用其它方法 1、把三角形剪一刀,然后把它重新拼成一個平行四邊形!你能用什么辦法解決這個問題?2、你能把一個三角形剪成四個全等三角形嗎?3、畫ABC分別取AB的中點D, AC的中點E 連接DE,用你手中的工具測量。DE與BC的數(shù)量關系,EF = 1/2 BC ;與BC的位置關系,EFBC。(二)對于定理的證明也可以用另外的方法證明:先對折得到AB的中點D, AC的中點E。過點D作DFBC,把BDF繞點D順時針旋轉180°,到ADH;同樣過點E作EGBC,把CGE繞點E順時針旋轉180
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療銷售咨詢合同范本
- 供應商尾款合同范本
- 北京拆遷合同范本
- 單人旅游合同范本
- 單位郊區(qū)租房合同范本
- 丟車包賠協(xié)議合同范本
- 單位電線更換維修合同范例
- 醫(yī)藥調查項目合同范本
- 出錢經營合同范本
- 農業(yè)種植股合同范本
- 化學-江蘇省蘇州市2024-2025學年2025屆高三第一學期學業(yè)期末質量陽光指標調研卷試題和答案
- 游戲開發(fā)公司游戲產品設計與用戶體驗優(yōu)化計劃
- 浙江省金華市義烏市2024年中考語文二模試卷含答案
- 2024年湖南省安全員-B證考試題庫附答案
- GB/T 45015-2024鈦石膏綜合利用技術規(guī)范
- 2025-2025學年度第二學期仁愛版七年級英語下冊教學計劃
- 人教版高考生物一輪復習:選擇性必修1~3考點復習提綱匯編
- 廣東省廣州普通高中2025屆高三一診考試數(shù)學試卷含解析
- 車站信號自動控制(第二版) 課件 -2-室外設備接口電路
- 護理工作中的沖突與管理
- 國開電大、普通本科、成考畢業(yè)論文-《電子商務對傳統(tǒng)零售業(yè)的影響及其對策》(電子商務專業(yè))
評論
0/150
提交評論