版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、L o g oL o g o1Discrete MathematicsSouth China University of TechnologyDr. Han HuangL o g oL o g o2Section 8.5Chapter 8. GraphsL o g oL o g oContentsEuler Paths and Circuit1Hamilton Paths and Circuit2L o g oL o g oEuler Paths and CircuitL o g oL o g oKonigsberg Seven Bridges ProblemL o g oL o g oKon
2、igsberg Seven Bridges ProblemvThe Swiss mathematician Leonhard Euler solved this problem. His solution, published in 1736, may be the first use of graph theory.vEuler studied the problem by using a multiple graph.The original problemEquivalent multigraphL o g oL o g oEuler circuitvDefinition 1: vAn
3、Euler circuit in a graph G is simple circuit containing every edge of G.vAn Euler path in G is a simple path containing every edge of G.No solution!L o g oL o g oExample 1adbceG1vThe graph G1 has an Euler circuit, for example a, e, c, d, e, b, a.L o g oL o g oExample 1vG2 does not have an Euler circ
4、uit.vG2 does not have an Euler path, either.adbceG2L o g oL o g oExample 1adbceG3vG3 does not have an Euler circuit.vG3 has an Euler path: a, c, d, e, b, d, a, b.L o g oL o g oNecessary and Sufficient ConditionsvThere are simple criteria for determining whether a multiple has an Euler circuit and Eu
5、ler path.vAn Euler circuit begins with a vertex a and continues with an edge incident to a, say a,b.vThe edge a, b contributes one to deg(a).vEach time the circuit passes through a vertex it contributes two to the vertexs degree, since the circuit enters via an edge incident with this vertex and lea
6、ves via another such edge.L o g oL o g oNecessary and Sufficient ConditionsvTherefore, deg(a) must be even, because the circuit contributes two every time when it passes through a.vWe conclude that if a connected graph has an Euler circuit, then every vertex must have even degree.vTherefore, if a co
7、nnected graph has an Euler circuit, then every vertex must have even degree.Necessary condition!L o g oL o g oNecessary and Sufficient ConditionsvIs this necessary condition for the existence of an Euler circuit also sufficient?vAn Euler circuit exists in a connected multigraph if all vertices have
8、even degree?vThe proof is given with a construction.vSuppose that the degree of every vertex of G is even. vWe can build a simple path x0,x1,x1,x2,xn-1,xn where x0=a is an arbitrary vertex.L o g oL o g ovIt begins at a with an edge of the form a, x, and it terminates at a with an edge of the form y,
9、 a.vEach time the path goes through a vertex with even degree, it uses only one edge to enter this vertex,vSo that at least one edge remains for the path to leave the vertex.abcfaedL o g oL o g ovAn Euler circuit has been constructed if all the edges have been used.vOtherwise, consider the subgraph
10、H obtained from G by deleting the edges already used and vertices that are not incident with any edges.vWhen we delete the circuit a, f, c, b, a from the graph in Figure 5, we obtain the subgraph labeled as H.L o g oL o g ovSince G is connected, H has at least one vertex in common with the circuit t
11、hat has been deleted. Let w be such a vertex.cedabcfaedGHL o g oL o g ovEvery vertex in H has even degree. vH may not be connected. vBeginning at w, construct a simple path in H by choosing edges as long as possible, as was done in G.vThis path must terminate at w.vFor instance, c, d, e, c is a path
12、 in H. Form a circuit in G by splicing the circuit in H with the original circuit in G.L o g oL o g ovForm a circuit in G by splicing the circuit in H with the original circuit in G. This can be done since w is one of the vertices in this circuit.vWhen this is done in the graph in Figure 5, we obtai
13、n the circuit a, f, c, d, e, c, b, a.cedabcfaedGHL o g oL o g ovContinue this process until all edges have been used.vThe process must terminate since there are only a finite number of edges in the graph.vThis produces an Euler circuit .vIf the vertices of a connected multigraph all have even degree
14、, then the graph has an Euler circuit.L o g oL o g ovTheorem 1: A connected multigraph has an Euler circuit if and only if each of its vertices has even degree.v4 vertices of odd degree, it does not have an Euler circuit.L o g oL o g oExample 2vH1 does not have an Euler circuit.vH1 does not have an
15、Euler path, either.adbcH1L o g oL o g oExample 2vH2 has an Euler circuit: a, g, c, b, g, e, d, f, aadbcH2feL o g oL o g oExample 2vH3 does not have an Euler circuit.vH3 has an Euler path: c, a, b, c, d, bcadbH3L o g oL o g oMore examplesv(a) and (c) does not have an Euler circuit.v(a) and (c) does n
16、ot have an Euler path, either.v(b) has both an Euler circuit and an Euler path.L o g oL o g oAlgorithmvAlgorithm 1 gives the constructive procedure for finding Euler circuits given in the discussion preceding Theorem 1.vThe algorithm specifies the steps of the procedure more precisely.L o g oL o g o
17、Algorithm 1 Constructing Euler CircuitvProcedure Euler (G: connected mutilgraph with all vertices of even degree)v1: circuit := a circuit in G beginning at an arbitrarily chosen vertex with edges successively added to form a path that returns to this vertex. v2: H := G with the edges of this circuit
18、 removed L o g oL o g oAlgorithm 1 Constructing Euler Circuitv3: while H has edgesvBeginv subcircuit := a circuit in H beginning at a vertex in H that also is the endpoint of an edge of circuit H := H with edges of subcircuit and all isolated vertices removed circuit := circuit with subcircuit inser
19、ted at the appropriate vertexEnd the circuit is an Euler circuit.L o g oL o g oExample vC1 in G:v1 v2 v3 v4 v5 v1vC2 in GC1 : v1 v3 v5 v2 v4 v1vv1 is the shared vertex of C1 and C2.vThe Euler circuit is : v1 v2 v3 v4 v5 v1 v3 v5 v2 v4 v1L o g oL o g oExample 3vMohammed s scimitarsvEvery vertex has e
20、ven degree.vTherefore, we can use algorithm 1 to solve its Euler circuit.acbedfiggjkGL o g oL o g oExample 3acbedfighjk1、a, b, d, c, b, e, i, f, e, a in G2、d, g, h, j, i, h, k, g, f, d in H3、 a, b, d, g, h, j, i, h, k, g, f, d, c, b, e, i, f, e, a GHL o g oL o g ovTheorem 2: A connected multigraph h
21、as an Euler path but not an Euler circuit if and if only if it has exactly two vertices of odd degree.v vMain idea of the proof :vEvery time the path goes through a there is path contributes one to the degree of a.vThe terminal and the beginning vertices have odd degree.L o g oL o g oExample 4vG1 co
22、ntains exactly two vertices of odd degree, namely, b and d.vEuler path: d, a, b, c, d, badbcG1L o g oL o g oExample 4vG2 contains exactly two vertices of odd degree, namely, b and d.vEuler path: b, a, g, f, e, d, c, g, b, c, f, dabgcG2fdeL o g oL o g ovG3 has no Euler path since it six vertices of o
23、dd degree.adbceG3L o g oL o g ov4 vertices of odd degree, it does not have an Euler path, such trip is impossible.L o g oL o g oApplication of Euler pathvChinese postman problemvIf a postman can find an Euler path in the graph that represents the streets the postman needs to cover, this path produce
24、s a route that traverses each street of the route exactly one.vIf no Euler path exists, some streets will have to be traversed more than once.L o g oL o g oHamilton Paths and CircuitL o g oL o g o( Hamilton PathsvAn Euler circuit in a graph G is a simple circuit containing every edge of G.vAn Euler
25、path in G is a simple path containing every edge of G.vA Hamilton circuit is a circuit that traverses each vertex in G exactly once.vA Hamilton path is a path that traverses each vertex in G exactly once. )L o g oL o g oHamilton PathsvDefinition 2: vA path x0, x1, , xn-1, xn in the graph G = is call
26、ed a Hamilton path if V = x0, x1, xn-1, xn and xixj for 0ijn.vA circuit x0, x1, , xn-1, xn is a Hamilton path.L o g oL o g oSource of the terminologyvHamilton path comes from a game, called Voyage Round the word puzzle, invented by Irish mathematician Sir William Rowan Hamilton.vThe puzzle was to st
27、art at a city and travel along the edges of the dodecahedron, visiting each of the other 19 cities exactly once, and back for the first city.L o g oL o g oExample 5vG1 has a Hamilton circuit: a, b, c, d, e, a.aebcdG1L o g oL o g oExample 5vG2 does not have a Hamilton circuit.vG2 has a Hamilton path:
28、 a, b, c, d.abcdG2L o g oL o g oExample 5vG3 does not have a Hamilton circuit.vG3 does not have a Hamilton path.abcdG3gefL o g oL o g ovSurprisingly, there are no known simple necessary and sufficient criteria for the existence of Hamilton circuits. vHowever, some sufficient criteria are know.v1、a g
29、raph with a vertex of degree one cannot have a Hamilton circuit.v2、a Hamilton circuit cannot contain a smaller circuit within it.L o g oL o g oExample 6vThere is no Hamilton circuit in Gvsince G has a vertex of degree one.abdceGL o g oL o g oExample 6HvAll vertices have two degree.vBut H has no Hami
30、lton circuit, for any possible Hamilton circuit have to pass c twice.adbceL o g oL o g oExample 7vWe can form a Hamilton circuit in Kn beginning at any vertex.vSuch a circuit can be built by visiting vertices in any order we choose, which is possible since there are edges in Kn between any two verti
31、ces.L o g oL o g oHamiltonian Path TheoremsvDiracs theorem: If (but not only if) G is connected, simple, has n 3 vertices, and v deg(v) n/2, then G has a Hamilton circuit.vOres theorem : If G is connected, simple, has n3 nodes, and deg(u)+deg(v)n for every pair u,v of non-adjacent nodes, then G has
32、a Hamilton circuit. L o g oL o g o Ores theorem: G是是n階簡(jiǎn)單圖,階簡(jiǎn)單圖,n3,則:,則: (1)如任兩不相鄰結(jié)點(diǎn)如任兩不相鄰結(jié)點(diǎn)u、vV,均有,均有d(u)d(v)n1,則,則在在G中存在一條哈密爾頓路。中存在一條哈密爾頓路。 (2)如任兩不相鄰結(jié)點(diǎn)如任兩不相鄰結(jié)點(diǎn)u、vV,均有,均有d(u)d(v)n,則,則G是哈密爾頓圖。是哈密爾頓圖。 證明證明 (1)先證先證G是連通的。若是連通的。若G不連通,設(shè)不連通,設(shè)G1、G2為其兩為其兩個(gè)連通分支,個(gè)連通分支,u、v分別是分別是G1、G2的結(jié)點(diǎn),則的結(jié)點(diǎn),則u、v在在G中不相鄰中不相鄰且有且有
33、d(u)d(v)|V(G1)|1|V(G2)|1n2,與已知矛盾,與已知矛盾,所以所以G是連通的。是連通的。Proof in ChineseL o g oL o g o 再證再證G中存在一條哈密爾頓路。設(shè)中存在一條哈密爾頓路。設(shè) :v1v2vs是是G的最的最長(zhǎng)的基本路,則長(zhǎng)的基本路,則sn。若。若sn,先證,先證G中必有經(jīng)過中必有經(jīng)過v1、v2、vs的回路。的回路。 若若v1與與vs鄰接,則鄰接,則 與邊與邊v1,vs構(gòu)成一個(gè)回路。若構(gòu)成一個(gè)回路。若v1與與vs不鄰接,因?yàn)椴秽徑?,因?yàn)?:v1v2vs是是G的最長(zhǎng)的基本路,所以的最長(zhǎng)的基本路,所以v1與與vs的的鄰接結(jié)點(diǎn)都在鄰接結(jié)點(diǎn)都在 上。上
34、。 L o g oL o g o設(shè)設(shè)v1的鄰接結(jié)點(diǎn)依的鄰接結(jié)點(diǎn)依 上的順序?yàn)樯系捻樞驗(yàn)?,(2i1iks1),若,若vs與與 中的結(jié)點(diǎn)都不鄰接,則中的結(jié)點(diǎn)都不鄰接,則d(vs)sk1,于是,于是d(v1)d(vs)ksk1n1,矛盾。,矛盾。所以,存在所以,存在j 1,2,k,使,使vs與鄰接,這時(shí)與鄰接,這時(shí) 構(gòu)成一個(gè)回路。構(gòu)成一個(gè)回路。L o g oL o g o 由由G是連通的,而是連通的,而sn,所以存在,所以存在G的不在的不在 上的結(jié)點(diǎn)上的結(jié)點(diǎn)v,v至少與至少與 上的某個(gè)結(jié)點(diǎn)鄰接。不妨設(shè)上的某個(gè)結(jié)點(diǎn)鄰接。不妨設(shè)v與與vr鄰接,若鄰接,若rij1,則則 構(gòu)成長(zhǎng)度為構(gòu)成長(zhǎng)度為s的基本路;若的基本路;若 ,則則構(gòu)成長(zhǎng)度為構(gòu)成長(zhǎng)度為s的基本路,與的基本路,與 的選取矛盾。的選取矛盾。所以所以sn。 :v1v2vs就是就是G的一條哈密爾頓路的一條哈密爾頓路. L o g oL o g o(2)(2)如任兩不相鄰結(jié)點(diǎn)如任兩不相鄰結(jié)點(diǎn)u u、v vV V,均有,均有d d( (u u) )d d( (v v)n n,則,則G G是哈密爾頓圖。是哈密爾頓圖。(2)(2)證明:設(shè)證明:設(shè) :v v1 1v v22vnvn是是G G中的哈密爾頓路,若中的哈密爾頓路,若v v1 1與與vnvn鄰接,則鄰
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度小工廠勞動(dòng)合同(附職業(yè)培訓(xùn)及晉升協(xié)議)3篇
- 二零二五年度馬鈴薯種植購銷合同:詳細(xì)條款3篇
- 2025年電子產(chǎn)品組裝五金配件采購合同范本3篇
- 2025年網(wǎng)絡(luò)安全產(chǎn)品銷售擔(dān)保合同樣本
- 2025年新型四荒土地承包權(quán)轉(zhuǎn)讓合同3篇
- 2025年度農(nóng)產(chǎn)品批發(fā)市場(chǎng)租賃合同范本市場(chǎng)運(yùn)營(yíng)4篇
- 2025年度新型環(huán)保建材采購合同4篇
- 二零二五版安防行業(yè)標(biāo)準(zhǔn)制定與實(shí)施合同3篇
- 二零二五年度集體勞動(dòng)合同簽訂與員工福利保障合同
- 二零二五年度物流數(shù)據(jù)分析與應(yīng)用合同2篇
- 開展課外讀物負(fù)面清單管理的具體實(shí)施舉措方案
- 中國骨關(guān)節(jié)炎診療指南(2024版)解讀
- 2025年內(nèi)蒙古包鋼集團(tuán)公司招聘筆試參考題庫含答案解析
- 企業(yè)內(nèi)訓(xùn)師培訓(xùn)師理論知識(shí)考試題庫500題(含各題型)
- 2025年云南中煙工業(yè)限責(zé)任公司招聘420人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年山西省晉中市公開招聘警務(wù)輔助人員(輔警)筆試專項(xiàng)訓(xùn)練題試卷(2)含答案
- 2023九年級(jí)歷史上冊(cè) 第二單元 5《羅馬城邦和羅馬帝國》教學(xué)實(shí)錄 新人教版
- 北京市房屋租賃合同自行成交版北京市房屋租賃合同自行成交版
- 《AM聚丙烯酰胺》課件
- 教育綜合體項(xiàng)目策劃書
- 軟件開發(fā)項(xiàng)目服務(wù)方案
評(píng)論
0/150
提交評(píng)論