




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2.1.2 空間中直線與直線之間的位置關(guān)系2.1 2.1 空間點(diǎn)、直線、平面之間的位置關(guān)系空間點(diǎn)、直線、平面之間的位置關(guān)系第二章第二章 點(diǎn)、直線、平面之間的位置關(guān)系點(diǎn)、直線、平面之間的位置關(guān)系生生活活數(shù)數(shù)學(xué)學(xué)地鐵線條與柱子線條地鐵線條與柱子線條水流線條與橋面線條水流線條與橋面線條相交直線相交直線(有一個(gè)公共點(diǎn))(有一個(gè)公共點(diǎn))平行直線平行直線(無公共點(diǎn))(無公共點(diǎn))aboabBADC立交橋中立交橋中, 兩條路線兩條路線,AB CD復(fù)習(xí)回顧復(fù)習(xí)回顧兩路相交兩路相交立交橋立交橋既不平行又不相交既不平行又不相交不同在不同在 任何任何 一個(gè)平面內(nèi)的兩條直線叫做異面直線。一個(gè)平面內(nèi)的兩條直線叫做異面直線
2、。概念定義概念定義 異面直線的定義異面直線的定義異面直線的畫法:為了體現(xiàn)不共面的特點(diǎn)采用平面襯托法異面直線的畫法:為了體現(xiàn)不共面的特點(diǎn)采用平面襯托法ababab異面直線的判定定理異面直線的判定定理連結(jié)平面內(nèi)一點(diǎn)和平面外一點(diǎn)的直線,和這個(gè)平連結(jié)平面內(nèi)一點(diǎn)和平面外一點(diǎn)的直線,和這個(gè)平面內(nèi)不經(jīng)過此點(diǎn)的直線是異面直線面內(nèi)不經(jīng)過此點(diǎn)的直線是異面直線知識(shí)延伸知識(shí)延伸證明:證明:A平平面面點(diǎn)點(diǎn) 點(diǎn)點(diǎn)BB直線直線ll直線直線 異面異面ABl與與lAB想一想想一想, ,做一做:做一做:1.1.已知已知M M、N N分別是長(zhǎng)方體的棱分別是長(zhǎng)方體的棱C1D1C1D1與與CC1CC1上上的點(diǎn),那么的點(diǎn),那么MNMN與
3、與ABAB所在的直線是異面直線嗎?所在的直線是異面直線嗎?MNC1D1C1B1ADBA 2. 下圖是一個(gè)正方體的展開圖,如果將它下圖是一個(gè)正方體的展開圖,如果將它還原成正方體,那么還原成正方體,那么AB,CD,EF,GH這這四條線段所在直線是異面直線的有幾對(duì)?四條線段所在直線是異面直線的有幾對(duì)?想一想想一想, ,做一做:做一做:HGFEDCBA三對(duì)三對(duì)AB與與CDAB與與GHEF與與GHa與與b是相交直線是相交直線a與與b是平行直線是平行直線a與與b是異面直線是異面直線abM答:不一定:它們可能異面,可能相交,答:不一定:它們可能異面,可能相交, 也可能平行。也可能平行。 分別在兩個(gè)平面內(nèi)的兩
4、條直線是否一定異面?分別在兩個(gè)平面內(nèi)的兩條直線是否一定異面?abab合作探究合作探究空間兩條直線的位置關(guān)系有且只有三種空間兩條直線的位置關(guān)系有且只有三種平行直線共異面直線面直線相交直線平行平行相交相交異面異面位置關(guān)系位置關(guān)系公共點(diǎn)個(gè)數(shù)公共點(diǎn)個(gè)數(shù)是否共面是否共面沒有沒有只有一個(gè)只有一個(gè)沒有沒有共面共面不共面不共面共面共面空間中兩條直線的位置關(guān)系空間中兩條直線的位置關(guān)系2 2、在同一平面內(nèi),同平行于一條直線的兩、在同一平面內(nèi),同平行于一條直線的兩條直線有什么位置關(guān)系?條直線有什么位置關(guān)系?互相平行互相平行提出問題:空間中的兩條直線呢?提出問題:空間中的兩條直線呢?問題問題2:沒有公共點(diǎn)的直線一定平
5、行嗎?:沒有公共點(diǎn)的直線一定平行嗎?問題問題3:沒有公共點(diǎn)的兩直線一定在同:沒有公共點(diǎn)的兩直線一定在同一平面內(nèi)嗎?一平面內(nèi)嗎?2.2. 空間兩平行直線空間兩平行直線提出問題:在同一平面內(nèi),如果兩條直線提出問題:在同一平面內(nèi),如果兩條直線都與第三條直線平行,那么這兩條直線互都與第三條直線平行,那么這兩條直線互相平行。在空間中,是否有類似的規(guī)律?相平行。在空間中,是否有類似的規(guī)律?平行嗎平行嗎?中中,ABCDABC DBBDD察看:如圖察看:如圖2.1.2-5,長(zhǎng)方體長(zhǎng)方體與與那么那么DD AABB AAABCDBCDA公理公理4:平行于同一條直線的兩條直線互相:平行于同一條直線的兩條直線互相平行
6、。平行。公理公理4 4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。這個(gè)性質(zhì)都適用。公理公理4 4作用:判斷空間兩條直線平行的依據(jù)。作用:判斷空間兩條直線平行的依據(jù)。abcbac符號(hào)表示:設(shè)空間中的三條直線分別為符號(hào)表示:設(shè)空間中的三條直線分別為a, b, c,假設(shè)假設(shè)想一想想一想:空間中空間中,如果兩條直線都與第三條直如果兩條直線都與第三條直線垂直線垂直,是否也有類似的規(guī)律是否也有類似的規(guī)律?例題示范例題示范例例1: 在空間四邊形在空間四邊形ABCD中,中,E,F(xiàn),G,H分別是分別是AB,BC,CD,DA的中點(diǎn)。的中點(diǎn)。求證:四邊形求證:四邊形E
7、FGH是平行四邊形。是平行四邊形。分析:分析: 欲證欲證EFGH是一個(gè)平行四邊形是一個(gè)平行四邊形只需證只需證EHFG且且EHFGE,F(xiàn),G,H分別是各邊中點(diǎn)分別是各邊中點(diǎn)連結(jié)連結(jié)BD,只需證:只需證:EH BD且且EH BDFG BD且且FG BD1212AB DEFGHC例題示范例題示范例例1: 在空間四邊形在空間四邊形ABCD中,中,E,F(xiàn),G,H分別是分別是AB,BC,CD,DA的中點(diǎn)。的中點(diǎn)。求證:四邊形求證:四邊形EFGH是平行四邊形。是平行四邊形。AB DEFGHC EH是是ABD的中位線的中位線 EH BD且EH = BD同理,同理,F(xiàn)G BD且且FG = BDEH FG且且EH
8、 =FGEFGH是一個(gè)平行四邊形是一個(gè)平行四邊形證明:證明:連結(jié)連結(jié)BD2121變式一:變式一: 在例在例2中,如果再加上條件中,如果再加上條件AC=BD,那么四邊形,那么四邊形EFGH是什么是什么圖形圖形?EHFGABCD分析:分析: 在例題在例題2的基礎(chǔ)上的基礎(chǔ)上我們只需要證明平行四我們只需要證明平行四邊形的兩條鄰邊相等。邊形的兩條鄰邊相等。菱形菱形3.3. 等角定理等角定理提出問題提出問題: :在平面上在平面上, ,我們?nèi)菀鬃C明我們?nèi)菀鬃C明“如果一個(gè)角如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩個(gè)的兩邊和另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ)角相等或互補(bǔ)”。在空間中。在空間
9、中, ,結(jié)論是否仍然成立呢結(jié)論是否仍然成立呢? ?觀察思考:如圖觀察思考:如圖,ADC,ADC與與ADCADC、ADCADC與與ABCABC的兩邊分別對(duì)應(yīng)平行,這兩組角的大小的兩邊分別對(duì)應(yīng)平行,這兩組角的大小關(guān)系如何?關(guān)系如何?3.3. 等角定理等角定理定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。那么這兩個(gè)角相等或互補(bǔ)。ABCDEF3.3. 等角定理等角定理定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。那么這兩個(gè)角相等或互補(bǔ)。ABCDEF定理的推論定理的推論: :如果兩
10、條相交直線和另兩條相如果兩條相交直線和另兩條相交直線分別平行交直線分別平行, ,那么這兩條直線所成的銳那么這兩條直線所成的銳角角( (或直角或直角) )相等相等. .4.4. 異面直線所成的角異面直線所成的角如圖,已知兩條異面直線如圖,已知兩條異面直線a a,b b,經(jīng)過空間任一,經(jīng)過空間任一點(diǎn)點(diǎn)O O作直線作直線aaaa,bbbb,我們把,我們把a(bǔ)a與與bb所成所成的銳角或直角叫做異面直線的銳角或直角叫做異面直線a a,b b所成的角所成的角或夾角)?;驃A角)。為了簡(jiǎn)便,點(diǎn)為了簡(jiǎn)便,點(diǎn)O O通常取在兩條異面直線中的一條上,例通常取在兩條異面直線中的一條上,例如,取在直線如,取在直線b b上,
11、然后經(jīng)過點(diǎn)上,然后經(jīng)過點(diǎn)O O作直線作直線aaaa,aa 和和b b所所成的銳角或直角就是異面直線成的銳角或直角就是異面直線a a與與b b所成的角。所成的角。想一想想一想:a:a與與bb 所成角的大小與點(diǎn)所成角的大小與點(diǎn)O O的位置有關(guān)嗎的位置有關(guān)嗎? ?4.4. 異面直線所成的角異面直線所成的角如果兩條異面直線所成的角為直角,如果兩條異面直線所成的角為直角,就說兩條直線互相垂直,記作就說兩條直線互相垂直,記作abab。ba aOab 記記作作:異面直線所成的角異面直線所成的角 已知兩條異面直線已知兩條異面直線a、b,在空間任取一點(diǎn),在空間任取一點(diǎn)O,作作aa,bb , a與與b所成的銳角或
12、直角,叫做異面直線所成的銳角或直角,叫做異面直線a、b所成的角所成的角(或叫做夾角或叫做夾角) babOa思索:異面直線所成角的范思索:異面直線所成角的范圍是圍是2, 0( 空間直線與直線之間的位置關(guān)系空間直線與直線之間的位置關(guān)系2.1.25.5. 異面直線的判定定理異面直線的判定定理異面直線定理:連結(jié)平面內(nèi)一異面直線定理:連結(jié)平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,和這點(diǎn)與平面外一點(diǎn)的直線,和這個(gè)平面內(nèi)不經(jīng)過此點(diǎn)的直線是個(gè)平面內(nèi)不經(jīng)過此點(diǎn)的直線是異面直線異面直線?B?A,ABlBl ABl與與 是異面直線是異面直線例題示范例題示范例例2 2、如圖,已知正方體、如圖,已知正方體ABCDABCDABCDA
13、BCD 中。中。(1 1哪些棱所在直線與直線哪些棱所在直線與直線BABA是異面直線?是異面直線?(2 2直線直線BABA 和和CCCC 的夾角是多少?的夾角是多少?(3 3哪些棱所在的直線與直線哪些棱所在的直線與直線AAAA 垂直?垂直?解:(解:(1 1由異面直線的判由異面直線的判定方法可知,與直線定方法可知,與直線BA成異面直線的有直線成異面直線的有直線,B CAD CC DD DC D C ,例題示范例題示范例例2 2、如圖,已知正方體、如圖,已知正方體ABCDABCDABCDABCD 中。中。(1 1哪些棱所在直線與直線哪些棱所在直線與直線BABA是異面直線?是異面直線?(2 2直線直
14、線BABA 和和CCCC 的夾角是多少?的夾角是多少?(3 3哪些棱所在的直線與直線哪些棱所在的直線與直線AAAA 垂直?垂直?解:(解:(2 2由由 可知,可知, 等于異面直線等于異面直線 與與 的夾角的夾角, ,所以異面直所以異面直線線 與與 的夾角為的夾角為450 450 。 /BBCCBBABACC,AB BC CD DA A BB C C D D A (3) 直線直線與直線與直線 都垂直都垂直.AACCBA例例3:3: 如圖,如圖,? ?是平面是平面?外的一點(diǎn)外的一點(diǎn)?分別是分別是?的重心,的重心,?求證:求證:?。?ABCD,GH,ABCACD/GHBD?N?M?H?G?D?C?B
15、?A證明:連結(jié)證明:連結(jié)?分別交分別交?于于?,?,連結(jié)連結(jié)?,?,?G,HG,H分別是分別是ABC,ACDABC,ACD的重的重心心,M,N,M,N分別是分別是BC,CDBC,CD的中點(diǎn)的中點(diǎn),?,?MN/BD,MN/BD,又又?GH/MN,?GH/MN,由公理由公理4 4知知GH/BD.?GH/BD.?,AG AH,BC CD,M NMN23AGAHAMAN練習(xí)反饋:練習(xí)反饋:1.?1.?判別判別: :(1 1平行于同一直線的兩條直線平行平行于同一直線的兩條直線平行. .(?)(2 2垂直于同一直線的兩條直線平行垂直于同一直線的兩條直線平行. .(? )(3 3過直線外一點(diǎn),有且只有一條直線與已知過直線外一點(diǎn),有且只有一條直線與已知直線平行直線平行 . . (?)(4 4與已知直線平行且距離等于定長(zhǎng)的直線只與已知直線平行且距離等于定長(zhǎng)的直線只有兩條有兩條. . (?)(5 5若一個(gè)角的兩邊分別與另一個(gè)角的兩邊平若一個(gè)角的兩邊分別與另一個(gè)角的兩邊平行,那么這兩個(gè)角相等(行,那么這兩個(gè)角相等(?)(6 6若兩條相交直線和另兩條相交直線分別平若兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成的銳角或直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年財(cái)務(wù)報(bào)表分析與決策考試試卷及答案
- 出生日期與就業(yè)情況證明(7篇)
- 格林童話中的英雄人物寫人作文(8篇)
- 我們的春游活動(dòng)記事作文9篇范文
- 漁業(yè)養(yǎng)殖與農(nóng)業(yè)生態(tài)循環(huán)協(xié)議
- 語言文學(xué)唐詩(shī)宋詞鑒賞題集
- 中國(guó)古代法律制度的演變
- 2025年現(xiàn)場(chǎng)顯示儀表項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 2025年會(huì)計(jì)職稱考試《初級(jí)會(huì)計(jì)實(shí)務(wù)》內(nèi)部控制與審計(jì)復(fù)習(xí)題及答案解析
- 2025法語DELFB2級(jí)閱讀理解試卷:日常新聞解讀
- 醫(yī)生護(hù)士家長(zhǎng)父母進(jìn)課堂助教-兒童醫(yī)學(xué)小常識(shí)PPT
- 2023春國(guó)開幼兒園科學(xué)教育專題形考任務(wù)1-4試題及答案
- 丹東港大東港區(qū)糧食、#13、#14泊位升級(jí)改造工程環(huán)境影響報(bào)告
- 生產(chǎn)計(jì)劃排產(chǎn)表-自動(dòng)排產(chǎn)
- 基于PLC的臺(tái)車呼叫控制設(shè)計(jì)
- JJF 1334-2012混凝土裂縫寬度及深度測(cè)量?jī)x校準(zhǔn)規(guī)范
- GB/T 18711-2002選煤用磁鐵礦粉試驗(yàn)方法
- 仁愛版八年級(jí)下英語易混淆單詞和短語辨析
- 檢驗(yàn)科工作人員健康管理制度(4篇)
- 簡(jiǎn)潔風(fēng)格微立體圖表圖標(biāo)關(guān)系動(dòng)態(tài)素材課件
- 藥用植物栽培學(xué)復(fù)習(xí)
評(píng)論
0/150
提交評(píng)論