



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高等數(shù)學(xué)考研大綱(一)、數(shù)一考試大綱第一章函數(shù)的極限與連續(xù)1理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念5理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系6掌握極限的性質(zhì)及四則運(yùn)算法則7掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法8理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會(huì)用等價(jià)無窮小量求極限9理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷
2、點(diǎn)的類型10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理) ,并會(huì)應(yīng)用這些性質(zhì)第二章一元函數(shù)微分學(xué)1理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系2掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分3了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)4會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)5理解并會(huì)用羅爾(
3、 Rolle )定理、拉格朗日( Lagrange)中值定理和泰勒( Taylor )定理,了解并會(huì)用柯西( Cauchy)中值定理6掌握用洛必達(dá)法則求未定式極限的方法7理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用8會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)當(dāng)時(shí),的圖形是凹的;當(dāng)時(shí),的圖形是凸的) ,會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形9了解曲率、曲率圓與曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑第三章一元函數(shù)積分學(xué)1理解原函數(shù)的概念,理解不定積分和定積分的概念2掌握不定積分的基本公式,掌握不定積分
4、和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法3會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無理函數(shù)的積分4理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓- 萊布尼茨公式5了解反常積分的概念,會(huì)計(jì)算反常積分6掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值第四章向量代數(shù)和空間解析幾何1理解空間直角坐標(biāo)系,理解向量的概念及其表示2掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積、混合積),了解兩個(gè)向量垂直、平行的條件3理解單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,掌握用坐標(biāo)表達(dá)式進(jìn)
5、行向量運(yùn)算的方法4掌握平面方程和直線方程及其求法5會(huì)求平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等) )解決有關(guān)問題6會(huì)求點(diǎn)到直線以及點(diǎn)到平面的距離7了解曲面方程和空間曲線方程的概念8了解常用二次曲面的方程及其圖形,會(huì)求簡(jiǎn)單的柱面和旋轉(zhuǎn)曲面的方程9了解空間曲線的參數(shù)方程和一般方程了解空間曲線在坐標(biāo)平面上的投影,并會(huì)求該投影曲線的方程第五章多元函數(shù)微分學(xué)1理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)3理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會(huì)求全微分,了解全微分存在的必要條件和充分條件,了解全
6、微分形式的不變性4理解方向?qū)?shù)與梯度的概念,并掌握其計(jì)算方法5掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法6了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)7了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會(huì)求它們的方程8了解二元函數(shù)的二階泰勒公式9理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問題?第六章多元函數(shù)積分學(xué)1理解二重積分、三重積分的概念,了解重積分的性質(zhì),了解二重積分的中值定理2掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),會(huì)計(jì)算三
7、重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo))3理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系4掌握計(jì)算兩類曲線積分的方法5掌握格林公式并會(huì)運(yùn)用平面曲線積分與路徑無關(guān)的條件,會(huì)求二元函數(shù)全微分的原函數(shù)6了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計(jì)算兩類曲面積分的方法,掌握用高斯公式計(jì)算曲面積分的方法,并會(huì)用斯托克斯公式計(jì)算曲線積分7了解散度與旋度的概念,并會(huì)計(jì)算8會(huì)用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長(zhǎng)、質(zhì)量、質(zhì)心、 、形心、轉(zhuǎn)動(dòng)慣量、引力、功及流量等)第七章無窮級(jí)數(shù)1理解常數(shù)項(xiàng)級(jí)數(shù)收斂、發(fā)散以及收斂級(jí)數(shù)的和的概念,掌握級(jí)
8、數(shù)的基本性質(zhì)及收斂的必要條件2掌握幾何級(jí)數(shù)與級(jí)數(shù)的收斂與發(fā)散的條件3掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法,會(huì)用根值判別法4掌握交錯(cuò)級(jí)數(shù)的萊布尼茨判別法5了解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念以及絕對(duì)收斂與收斂的關(guān)系6了解函數(shù)項(xiàng)級(jí)數(shù)的收斂域及和函數(shù)的概念7理解冪級(jí)數(shù)收斂半徑的概念、并掌握冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法8了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求一些冪級(jí)數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會(huì)由此求出某些數(shù)項(xiàng)級(jí)數(shù)的和9了解函數(shù)展開為泰勒級(jí)數(shù)的充分必要條件10掌握 ex ,cos x,sin x,ln(1x) 及 (1x)的麥克勞林( Macl
9、aurin )展開式,會(huì)用它們將一些簡(jiǎn)單函數(shù)間接展開為冪級(jí)數(shù)11了解傅里葉級(jí)數(shù)的概念和狄利克雷收斂定理,會(huì)將定義在上的函數(shù)展開為傅里葉級(jí)數(shù),會(huì)將定義在上的函數(shù)展開為正弦級(jí)數(shù)與余弦級(jí)數(shù),會(huì)寫出傅里葉級(jí)數(shù)的和函數(shù)的表達(dá)式第八章常微分方程1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程及一階線性微分方程的解法3會(huì)解齊次微分方程、 伯努利方程和全微分方程, 會(huì)用簡(jiǎn)單的變量代換解某些微分方程4會(huì)用降階法解下列形式的微分方程:和5理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)6掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程7會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、
10、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程8會(huì)解歐拉方程9會(huì)用微分方程解決一些簡(jiǎn)單的應(yīng)用問題(二)數(shù)三大綱第一章函數(shù)的極限與連續(xù)1理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念5了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念6了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法7理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法了解無窮大量的概念及其與無窮小量的關(guān)系8
11、理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型9了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性, 理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì) (有界性、最大值和最小值定理、介值定理 ) ,并會(huì)應(yīng)用這些性質(zhì)第二章 一元函數(shù)微分學(xué)1理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系, 了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義 (含邊際與彈性的概念),會(huì)求平面曲線的切線方程和法線方程2掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)3了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)4了解微分的概念、導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會(huì)求函數(shù)的微分5理解羅爾(
12、Rolle )定理、拉格朗日 ( Lagrange) 中值定理,了解泰勒( Taylor )定理、柯西( Cauchy)中值定理,掌握這四個(gè)定理的簡(jiǎn)單應(yīng)用6會(huì)用洛必達(dá)法則求極限7掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用8會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性 (注:在區(qū)間 ( a,b)內(nèi),設(shè)函數(shù) f ( x) 具有二階導(dǎo)數(shù)當(dāng) f ( x) 0 時(shí), f ( x) 的圖形是凹的;當(dāng) f ( x) 0 時(shí), f ( x) 的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線9會(huì)描述簡(jiǎn)單函數(shù)的圖形第三章 一元函數(shù)積分學(xué)1理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和
13、基本積分公式,掌握不定積分的換元積分法與分部積分法2了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓 - 萊布尼茨公式以及定積分的換元積分法和分部積分法3會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問題4了解反常積分的概念,會(huì)計(jì)算反常積分第四章 多元函數(shù)微積分學(xué)1了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)3了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念 , 會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分 , 會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)4了解多元函數(shù)極值和條件極
14、值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決簡(jiǎn)單的應(yīng)用問題5了解二重積分的概念與基本性質(zhì), 掌握二重積分的計(jì)算方法 (直角坐標(biāo)、極坐標(biāo)),了解無界區(qū)域上較簡(jiǎn)單的反常二重積分并會(huì)計(jì)算第五章 無窮級(jí)數(shù)1了解級(jí)數(shù)的收斂與發(fā)散、收斂級(jí)數(shù)的和的概念2了解級(jí)數(shù)的基本性質(zhì)及級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)及p 級(jí)數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法3了解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念以及絕對(duì)收斂與收斂的關(guān)系, 了解交錯(cuò)級(jí)數(shù)的萊布尼茨判別法4會(huì)求冪級(jí)數(shù)的收斂
15、半徑、收斂區(qū)間及收斂域5了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì) (和函數(shù)的連續(xù)性、 逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求簡(jiǎn)單冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的和函數(shù)6了解 ex , sin x , cos x , ln(1 x) 及 (1 x) 的麥克勞林( Maclaurin )展開式第六章 常微分方程與差分方程1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法3會(huì)解二階常系數(shù)齊次線性微分方程4了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程5了解差分與差分方程及其通解與特解等概
16、念6了解一階常系數(shù)線性差分方程的求解方法7會(huì)用微分方程求解簡(jiǎn)單的經(jīng)濟(jì)應(yīng)用問題(三)、高等數(shù)學(xué)數(shù)二考試大綱第一章 函數(shù)、極限、連續(xù)1理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用問題的函數(shù)關(guān)系2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念5理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系6掌握極限的性質(zhì)及四則運(yùn)算法則7掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法8理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會(huì)用等價(jià)
17、無窮小量求極限9理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理) ,并會(huì)應(yīng)用這些性質(zhì)第二章 一元函數(shù)微分學(xué)1理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系2掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分3了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)4會(huì)求分段函數(shù)的
18、導(dǎo)數(shù), 會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)5理解并會(huì)用羅爾 (Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒 (Taylor )定理,了解并會(huì)用柯西 ( Cauchy )中值定理6掌握用洛必達(dá)法則求未定式極限的方法7理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用8會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性 (注:在區(qū)間a,b 內(nèi),設(shè)函數(shù) f (x) 具有二階導(dǎo)數(shù)當(dāng)f (x)0 時(shí), f ( x) 的圖形是凹的;當(dāng)f ( x)0 時(shí), f (x) 的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形9了解曲率、曲率圓和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑第三章 一元函數(shù)積分學(xué)1理解原函數(shù)的概念,理解不定積分和定積分的概念2掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法3會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無理函數(shù)的積分4理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式5了解反常積分的概念,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年姿態(tài)敏感器項(xiàng)目資金申請(qǐng)報(bào)告代可行性研究報(bào)告
- 營異常名錄管理暫行辦法
- 薊州區(qū)房屋土地管理辦法
- 蚌埠市基金管理辦法細(xì)則
- 行政預(yù)算與管理暫行辦法
- 衢州市排澇泵站管理辦法
- 西寧市市民中心管理辦法
- 西藏合同制工人管理辦法
- 設(shè)備管理與保養(yǎng)管理辦法
- 評(píng)標(biāo)專家?guī)旃芾頃盒修k法
- 駐非洲員工管理制度
- 2025年高考真題-物理(江蘇卷) 含答案
- 2025年高考真題-化學(xué)(安徽卷) 含答案
- 工程內(nèi)業(yè)資料管理制度
- 美容院商業(yè)計(jì)劃書(完整版)
- T/CMAM W-5-2022維吾爾醫(yī)常見病診療指南骨科
- 摩托車協(xié)議過戶協(xié)議書
- 2025年食品檢驗(yàn)員考試試卷及答案
- 四川省德陽市2025年七年級(jí)下學(xué)期語文期末試卷及答案
- 黎族文化課件
- 中華人民共和國民營經(jīng)濟(jì)促進(jìn)法
評(píng)論
0/150
提交評(píng)論