自動化專業(yè)英語第三版 王宏文_第1頁
自動化專業(yè)英語第三版 王宏文_第2頁
自動化專業(yè)英語第三版 王宏文_第3頁
自動化專業(yè)英語第三版 王宏文_第4頁
自動化專業(yè)英語第三版 王宏文_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、UNIT 1Electrical NetworksA 電路An electrical circuit or network is composed of elements such as resistors, inductors, and capacitors connected together in some manner. If the network

2、 contains no energy sources, such as batteries or electrical generators, it is known as a passive network. On the other hand, if one or more energy sources are&

3、#160;present, the resultant combination is an active network. In studying the behavior of an electrical network, we are interested in determining the voltages and currents tha

4、t exist within the circuit. Since a network is composed of passive circuit elements, we must first define the electrical characteristics of these elements. 電路或電網(wǎng)絡由以某種方式連接的電阻器、電感器和電

5、容器等元件組成。如果網(wǎng)絡不包含能源,如電池或發(fā)電機,那么就被稱作無源網(wǎng)絡。換句話說,如果存在一個或多個能源,那么組合的結果為有源網(wǎng)絡。在研究電網(wǎng)絡的特性時,我們感興趣的是確定電路中的電壓和電流。因為網(wǎng)絡由無源電路元件組成,所以必須首先定義這些元件的電特性. In the case of a resistor, the voltage-current relationship is given by Ohm's law, which

6、0;states that the voltage across the resistor is equal to the current through the resistor multiplied by the value of the resistance. Mathematically, this is expressed as

7、 就電阻來說,電壓-電流的關系由歐姆定律給出,歐姆定律指出:電阻兩端的電壓等于電阻上流過的電流乘以電阻值。在數(shù)學上表達為: u=iR (1-1A-1)式中 u=電壓,伏特;i =電流,安培;R = 電阻,歐姆。 The voltage across a pure inductor is defined by Faradays law, which states that the

8、 voltage across the inductor is proportional to the rate of change with time of the current through the inductor. Thus we have 純電感電壓由法拉第定律定義,法拉第定律指出:電感兩端的電壓正比于流過電感的電流隨時間的變化率。因此可得到:U=Ldi

9、/dt 式中 di/dt = 電流變化率, 安培/秒; L = 感應系數(shù), 享利。  The voltage developed across a capacitor is proportional to the electric charge q accumulating on the plates of 

10、the capacitor. Since the accumulation of charge may be expressed as the summation, or integral, of the charge increments dq, we have the equation 電容兩端建立的電壓正比于電容兩極板上積累的電荷q 。因為電

11、荷的積累可表示為電荷增量dq的和或積分,因此得到的等式為 u=    , 式中電容量C是與電壓和電荷相關的比例常數(shù)。由定義可知,電流等于電荷隨時間的變化率,可表示為i = dq/dt。因此電荷增量dq 等于電流乘以相應的時間增量,或dq = i dt, 那么等式 (1-1A-3) 可寫為式中 C = 電容量,法拉。 歸納式(1-1A-1)、(1-1A-2) 和 (1-1A-4)描述的三種

12、無源電路元件如圖1-1A-1所示。注意,圖中電流的參考方向為慣用的參考方向,因此流過每一個元件的電流與電壓降的方向一致。  Active electrical devices involve the conversion of energy to electrical form. For example, the electrical energy in a battery is

13、0;derived from its stored chemical energy. The electrical energy of a generator is a result of the mechanical energy of the rotating armature. 有源電氣元件涉及將其它能量轉換為電能,例如,電池中的電能來自其儲存的化學能,發(fā)電機的

14、電能是旋轉電樞機械能轉換的結果。 Active electrical elements occur in two basic forms: voltage sources and current sources. In their ideal form, voltage sources generate a constant voltage independ

15、ent of the current drawn from the source. The aforementioned battery and generator are regarded as voltage sources since their voltage is essentially constant with load. 

16、On the other hand, current sources produce a current whose magnitude is independent of the load connected to the source. Although current sources are not as familiar 

17、;in practice, the concept does find wide use representing an amplifying device, such as the transistor, by means of an equivalent electrical circuit. 有源電氣元件存在兩種基本形式:電壓源和電流源。其理想狀態(tài)為:電壓源兩端

18、的電壓恒定,與從電壓源中流出的電流無關。因為負載變化時電壓基本恒定,所以上述電池和發(fā)電機被認為是電壓源。另一方面,電流源產(chǎn)生電流,電流的大小與電源連接的負載無關。雖然電流源在實際中不常見,但其概念的確在表示借助于等值電路的放大器件,比如晶體管中具有廣泛應用。電壓源和電流源的符號表示如圖1-1A-2所示。 A common method of analyzing an electrical network is mesh or loop analysis. 

19、The fundamental law that is applied in this method is Kirchhoffs first law, which states that the algebraic sum of the voltages around a closed loop is 0, or,&#

20、160;in any closed loop, the sum of the voltage rises must equal the sum of the voltage drops. Mesh analysis consists of assuming that currents-termed loop currents-flow&#

21、160;in each loop of a network, algebraically summing the voltage drops around each loop, and setting each sum equal to 0. 分析電網(wǎng)絡的一般方法是網(wǎng)孔分析法或回路分析法。應用于此方法的基本定律是基爾霍夫第一定律,基爾霍夫第一定律指出:一個閉合回路中的電壓代數(shù)和為0,換句

22、話說,任一閉合回路中的電壓升等于電壓降。網(wǎng)孔分析指的是:假設有一個電流即所謂的回路電流流過電路中的每一個回 路,求每一個回路電壓降的代數(shù)和,并令其為零。 考慮圖1-1A-3a 所示的電路,其由串聯(lián)到電壓源上的電感和電阻組成,假設回路電流i ,那么回路總的電壓降為 因為在假定的電流方向上,輸入電壓代表電壓升的方向,所以輸電壓在(1-1A-5)式中為負。因為電流方向是電壓下降的方向,所以每一個無源元件的壓降為正。利用電阻和電感壓降公式,可得等式(1-1A-6)是電路電流的微分方程式。 或許在電路中,人們感興趣的變量是電感電壓而不是電感電流

23、。正如圖1-1A-1指出的用積分代替式(1-1A-6)中的i,可得1-1A-7 AA Operational AmplifierA 運算放大器One problem with electronic devices corresponding to the generalized amplifiers(n. 放大器)is that the gains, Au of Ai, depend upon&#

24、160;internet properties of the two port system (m,b,iR,oR , etc.). This makes design difficult since these parameters usually vary from devise to devise, as well as with&

25、#160;temperature. The operational amplifier, or Op-Amp, is designed to device to minimize this dependence and to maximize the ease of design .An Op-Amp is an integrated c

26、ircuit that has many component parts such as resistors and transistor built into the device. At this point we will make no attempt to describe these inner workings.運算放大器像

27、廣義放大器這樣的電子器件存在的一個問題就是它們的增益AU或AI取決于雙端口系統(tǒng)(m、b、RI、Ro等)的內部特性。器件之間參數(shù)的分散性和溫度漂移給設計工作增加了難度。設計運算放大器或Op-Amp的目的就是使它盡可能的減少對其內部參數(shù)的依賴性、最大程度地簡化設計工作。運算放大器是一個集成電路,在它內部有許多電阻、晶體管等元件。就此而言,我們不再描述這些元件的內部工作原理。  A totally general analysis of the Op-Amp is beyond the

28、60;scope of some texts. We will instead study one example in detail, then present the two Op-Amp laws and show how they can be used for analysis in many pr

29、actical circuit applications. These two principles allow one to design many circuits without a detailed understanding of the device physic. Hence, Op-Amp are quiet useful for&

30、#160;a researcher in a variety of technical field who need to build simple amplifier but do not want to design at the transistor lever. In the text of electrica

31、l circuits and electronics they will also show how to built simple filter circuits using Op-Amps. The transistor amplifiers, which are building block(積木)from which Op-Amp inte

32、grated circuits are constructed, will be discussed.運算放大器的全面綜合分析超越了某些教科書的范圍。在這里我們將詳細研究一個例子,然后給出兩個運算放大器定律并說明在許多實用電路中怎樣使用這兩個定律來進行分析。這兩個定律可允許一個人在沒有詳細了解運算放大器物理特性的情況下設計各種電路。因此,運算放大器對于在不同技術領域中需要使用簡單放大器而不是在晶體管級做設計的研究人員來說是非常有用的。在電路和電子學教科書中,也說明了如何用運算放大器建立簡單的濾波電路。作為構建運算放大器集成電路的積木晶

33、體管,將在下篇課文中進行討論。 The symbol used for an ideal Op-Amp is shown in Fig.1-2A-1. Only three connections are shown: the positive and negative inputs, and the output. Not shown&

34、#160;are other connections necessary to run the Op-Amp such as its attachment to power supplies and to ground potential(n. 電勢). The latter connections are necessary to us

35、e the Op-Amp in a practical circuit but are not necessary when considering the ideal Op-Amp applications we study in this unit. The voltages at the two inputs a

36、nd output will be represented by the symbols. Each is measured with respect to ground potential Operational amplifiers are differential devices. By this we mean that the&

37、#160;output voltage with respect to ground is given by the expression. 理想運算放大器的符號如圖1-2A-1所示。圖中只給出三個管腳:正輸入、負輸入和輸出。讓運算放大器正常運行所必需的其它一些管腳,諸如電源管腳、接零管腳等并未畫出。在實際電路中使用運算放大器時,后者是必要的,但在本文中討論理想的運算放大器的應用時則不必考慮后者。兩個輸入電壓和輸出電壓用符號U +、U -和Uo 表示。每一

38、個電壓均指的是相對于接零管腳的電位。運算放大器是差分裝置。差分的意思是:相對于接零管腳的輸出電壓可由下式表示    (1-2A-1)Where A is the gain of the Op-Amp and-+andUUthe voltages at inputs. In other words, the output voltage is A times&

39、#160;the difference in potential between the two inputs.式中 A 是運算放大器的增益,U + 和 U - 是輸入電壓。換句話說,輸出電壓是A乘以兩輸入間的電位差。  Integrated circuit technology allows construction of many amplifier c

40、ircuits on a single composite chip of semiconductor material. One key to the success of an operational amplifier is the cascading (n, v. 串聯(lián)adj 串聯(lián)的) of a number 

41、of transistor amplifiers to create a very large total gain. That is, the number A in Eq.(1-2A-1)can be on the order of(屬于同類的,約為)  100,000 or more. (For example, 

42、;cascading of five transistor amplifiers, each with a gain of 10, would yield this value for A.) A second important factor is that these circuits can be built i

43、n such a way that the current flow into each of he inputs is very small. A third important design feature is that the output of the device acts like a

44、n ideal voltage source.集成電路技術使得在非常小的一塊半導體材料的復合 “芯片”上可以安裝許多放大器電路。運算放大器成功的一個關鍵就是許多晶體管放大器“串聯(lián)”以產(chǎn)生非常大的整體增益。也就是說,等式(1-2A-1)中的數(shù)A約為100,000或更多 (例如,五個晶體管放大器串聯(lián),每一個的增益為10,那么將會得到此數(shù)值的A )。 第二個重要因素是這些電路是按照流入每一個輸入的電流都很小這樣的原則來設計制作的。第三個重要的設計特點就是運算放大器的輸出阻抗(Ro )非常小。也就是說運算放大器的輸出是一個

45、理想的電壓源。 We now can analyze the particular amplifier circuit given in Fig.1-2A-2 using these characteristics. First we note that the voltage at the positive  input,U+, is&

46、#160;equal to the source voltage,_UU=+.Various currents are defined in part b lf the figure. Applying KVL around the outer loop in Fig.1-2A-2b and remembering tat the out

47、put voltage,oU, is measured with respect ground ,we have 我們現(xiàn)在利用這些特性就可以分析圖1-2A-2所示的特殊放大器電路了。首先,注意到在正極輸入的電壓U +等于電源電壓,即U + =Us。各個電流定義如圖1-2A-2中的b圖所示。對圖   1-2A-2b的外回路應用基爾霍夫定律,注意輸出電壓Uo 指的是它與接零管腳之間的電位,我們就可得到因為運算放大器是按照沒有電流流入正輸入端

48、和負輸入端的原則制作的,即I - =0。那么對負輸入端利用基爾霍夫定律可得 I1 = I2,利用等式(1-2A-2) ,并設 I1 =I2 =I , U0 = (R1 +R2 ) I  (1-2A-3)根據(jù)電流參考方向和接零管腳電位為零伏特的事實,利用歐姆定律,可得負極輸入電壓U - :因此  U - =IR1 ,并由式 (1-2A-3)

49、可得:        因為現(xiàn)在已有了U+ 和U-的表達式,所以式(1-2A-1)可用于計算輸出電壓               ,綜合上述等式              ,可得:   

50、60;        最后可得:     This is the gain factor for the circuit. If A is a very large number, large enough that the denominator, by t

51、he AR term. The factor A, which is in both the numerator and denominator, then cancels out and the gain is given by the expression    這是電路的增益系數(shù)。如果A 是一個非常大的

52、數(shù),大到足夠使AR1 >> (R1 +R2),那么分式的分母主要由AR1 項決定,存在于分子和分母的系數(shù)A 就可對消,增益可用下式表示這表明            (1-2A-5b),This shows that if A is very large, then the gain of the&

53、#160;circuit is independent of the exact value of A and can be controlled by the choice of 21andRR. This is one of the key feature of Op-Amp itself. Note t

54、hat if A=100,000 the price we have paid for this advantage is that we have used a device with a voltage gain of 100,000 to produce an amplifier with a 

55、;gain if 10. In some sense, by using an Op-Amp we trade off (換?。﹑ower for control.如果A 非常大,那么電路的增益與A 的精確值無關并能夠通過R1和R2的選擇來控制。這是運算放大器設計的重要特征之一 在信號作用下,電路的動作僅取決于能夠容易被設計者改變的外部元件,而不取決于運算放大器本身的細節(jié)特性。注意,如果A=100,000, 

56、;而(R1 +R2) /R1=10,那么為此優(yōu)點而付出的代價是用一個具有100,000倍電壓增益的器件產(chǎn)生一個具有10倍增益的放大器。從某種意義上說,使用運算放大器是以 “能量”為代價來換取“控制” 。 A similar mathematical analysis can be made in any Op-Amp circuit, but this is cumbersome and ther

57、e are some very useful shortcuts that involve application if the two laws of Op-Amps which we now present.對各種運算放大器電路都可作類似的數(shù)學分析,但是這比較麻煩,并且存在一些非常有用的捷徑,其涉及目前我們提出的運算放大器兩個定律應用。 1) The first law&#

58、160;states this in normal Op-Amp circuits we may assume that the voltage difference between the input terminals is zero, that is,  第一個定律指出:在一般運算放大器電路中,可以假設輸入 端間的電壓為零,也就是說,2) The

59、60;second law states that in normal Op-Amp circuits both is of the input currents may be assumed to be zero:  2) 第二個定律指出:在一般運算放大器電路中,兩個輸入電流可被假定為零:I+=I-=0     The

60、0;first law is due to the large value of the intrinsic(adj. 內在的)gain A. for example, if the output if an Op-Amp is 1V and A=100,000, then510-+=-UUV. this is suc

61、h a small number that it can often be ignored, and we set-+=UU. The second law comes from the construction of the circuitry (n. 電路)inside the Op-Amp which is

62、60;such that almost mo current flows into either of the two input. 第一個定律是因為內在增益A的值很大。例,如果運算放大器的輸出是1V ,并且A=100,000, 那么 這是一個非常小、可以忽略的數(shù),因此可設U+=U-。第二個定律來自于運算放大器的內部電路結構,此結構使得基本上沒有電流流入任何一個輸入端。AAThe Transfer Function and the Laplace

63、 TransformationBB   傳遞函數(shù)和拉普拉斯變換 傳遞函數(shù)的概念     If the input-output relationship of the linear system of Fig.1 is known , the characteristics of the system itself are also known . The inputoutput relationship in the Laplace domain is called the transfer funct

64、ion (TF or G Gain) . By definition , the transfer function or system is the ration of the transformed output to the transformed input:如果像式2-1B-1表示的線性系統(tǒng)的輸入輸出關系已知,則系統(tǒng)的特性也可以知道。在拉普拉斯域表示的輸入輸出關系被稱做傳遞函數(shù)。由定義,元件或系統(tǒng)的傳遞函數(shù)是經(jīng)拉氏變換的輸出與輸入的比值: This definition of the transfer function requires the system to be l

65、inear and stationary , with continuous variables and with zero initial conditions . The transfer function is most useful when the system is lumped parameter and when transport lags are absent or neglected . Under these conditions the transfer function itself can be expressed as a ratio of two polyno

66、mials in the complex Laplace variables, or     此傳遞函數(shù)的定義要求系統(tǒng)是線性的和非時變的,具有連續(xù)變量和零起始條件。傳遞函數(shù)最適用于系統(tǒng)是集中參數(shù)和當傳輸延遲不存在或可忽略的情況。在這種條件下,傳遞函數(shù)本身可表示為拉普拉斯復數(shù)變量s的兩個多項式的比值:  For physical systems , N(s) will be of lower order than D(s) since nature integrates rather than differentiates.

67、It will be shown later that a frequency transfer function for use in the frequency domain can be obtained by replacing the Laplace variable s in the transfer function by jwt . For a closed-loop system, closedthe transfer function is:           對

68、于物理系統(tǒng),由于系統(tǒng)特性是積分而不是微分,所以N(s)的階次比D(s)要低。后面我們將看到用于頻域的頻率傳遞函數(shù),它是通過把傳遞函數(shù)中拉普拉斯變量s用jwt代換得到的。            在式2-1B-2中,傳遞函數(shù)分母D(s)由于包含系統(tǒng)中所有的物理特征值而被稱做特征方程。令D(s)等于0即得到特征方程。特征方程的解決定系統(tǒng)的穩(wěn)定性和對任一輸入下的暫態(tài)響應的一般特性。多項式N(s)是表示輸入如何進入系統(tǒng)的函數(shù)。因而N(s)并不影響絕對穩(wěn)定性或者暫態(tài)模式的數(shù)目和特性。&#

69、160;       在特定的輸入下,它決定每一暫態(tài)模式的大小和符號,從而確定暫態(tài)響應的圖形和輸出的穩(wěn)態(tài)值。            對于一個閉環(huán)系統(tǒng),其傳遞函數(shù)為:          式中W(s)為閉環(huán)傳遞函數(shù),G(s)H(s)稱為開環(huán)傳遞函數(shù),1+G(s)H(s)是特征函數(shù)。  

70、0;         傳遞函數(shù)可以通過多種方法求得。一種方法是純數(shù)學的,先對描述元件或系統(tǒng)的微分方程取拉普拉斯變換,然后求解得出傳遞函數(shù)。當存在非零起始條件時將之看作外加輸入對待。第二種方法是試驗法。通過給系統(tǒng)加上已知的輸入,測出輸出值,通過整理數(shù)據(jù)和曲線得出傳遞函數(shù)。某子系統(tǒng)或整個系統(tǒng)的傳遞函數(shù)經(jīng)常通過對已知的單個元件傳遞函數(shù)的正確合并而得到。這種合并或化簡稱做方塊圖代數(shù)。   拉普拉斯變換 The Laplace transformation comes fro

71、m the area of operational mathematics and is extremely useful in the analysis and design of linear systems. Ordinary differential equations with constant coefficients transform into algebraic equations that can be used to implement the transfer function concept. The Laplace transform is an evolution

72、 from the unilateral Fourier integral and is defined as:           拉氏變換源于工程數(shù)學領域,廣泛用于線性系統(tǒng)的分析和設計。常系數(shù)的常微分方程轉變?yōu)榇鷶?shù)方程可通過傳遞函數(shù)的概念實現(xiàn)。此外,拉氏域更適合于工作,傳遞函數(shù)容易處理、修改和分析。設計人員很快就會熟練地把拉普拉斯域的變化與時域狀態(tài)聯(lián)系起來而不需真地解系統(tǒng)方程(時域)。當需要時域解時拉氏變換法可直接使用。解是全解,包括通解和特解,初始條件被自動包含在內。最后,可以很

73、容易從拉氏域轉到頻域中去。           Where F(s) is the Laplace transform of f(t) . Conversely, f(t) is the inverse transform of F(s) and can be represented by the relationship: 變換拉氏是從傅立葉積分演變而來,它定義為:   The symbol s denotes the Laplace vari

74、able and is a complex variable ;Consequently, s is sometimes referred to as a complex frequency and the Laplace domain is called the complex frequency domain.  這里F(s)是f(t)的拉氏變換。相反,f(t)是F(s)反變換,它們之間的關系可由下式表達,     符號s表明拉氏變量是一個復數(shù)變量(s+jw)。因此,s有時表示復頻,拉氏域稱做復頻域。 

75、0;          由于式(2-1B-4)的積分是不定積分,因此不是所有函數(shù)都可以進行拉氏變換。幸運的是,系統(tǒng)設計者感興趣的函數(shù)通常都可以。拉氏變換的使用條件、理論證明和其他用途可見于工程數(shù)學的標準著作中。            式(2-1B-4)的定義可用來找到我們最常見和用到的函數(shù)的拉氏變換。為了方便,我們過去常建一個變換對的表,用于簡化拉氏域變換和反變換。 

76、    這里有幾條拉氏變換的定理和性質,它們既必需也很有幫助。     1.線性和疊加:     式中c和ci都是常數(shù)。     2. 微分和積分定理:對時間導數(shù)的拉氏變換可寫為        式中f(0), df(0), 等是初始條件。如果初始條件為零,正如控制系統(tǒng)分析和設計的一般情況,最后的方程

77、可縮減為:      積分的拉氏變換是     初始條件為零,它也可縮減為F(s)/s。     3. 初值和終值定理:初值定理表述為     在進行拉氏反變換時有用處。終值定理表述為     這里fss是f(t)的穩(wěn)態(tài)值。     4. 平移定理:第一個平移定理表明&

78、#160;                                               或  

79、   式(2-1B-6)表示在拉氏域內移動a個單位,變換后在時域內得到e-a倍。第二個平移定理表明      這個定理在對延遲的輸入和信號如傳輸滯后和由分析函數(shù)表示的連續(xù)輸入很有用。  建模         分析技術需要數(shù)學模型。對于具有有限數(shù)目微分方程和用方塊圖代數(shù)表示的時不變線性系統(tǒng)的分析和設計,傳遞函數(shù)是一種方便的模型形式。從描述一個特定對象、過程或元件的微分或積分-微分方程,運用拉氏方程及

80、其性質可以得到傳遞函數(shù)。            我們可以通過一個簡單的例子說明:         圖中輸出電壓uc由輸入電壓u激勵。根據(jù)基爾霍夫定律,二者關系可寫為下式     運用定理,零初始條件的變換方程如下     求解變換輸出與輸入的比,即得到系統(tǒng)的傳遞函數(shù)THe world of

81、 control控制的世界簡介     The word control is usually taken to mean regulate, direct, or command. Control systems abound in our environment. In the most abstract sense

82、0;it is possible to consider every physical object as a control system.      控制一詞的含義一般是調節(jié)、指導或者命令??刂葡到y(tǒng)大量存在于我們周圍。在最抽象的意義上說,每個物理對象都是一個控制系統(tǒng)。        Control systems desig

83、ned by humans are used to extend their physical capabilities, to compensate for their physical limitations, to relieve them of routine or tedious tasks, or to save m

84、oney.  In a modern aircraft, for example, the power boost controls amplify the force applied by the pilot to move the control surface against large aerodynamic force

85、s. The reaction time of a human pilot is too slow to enable him or her to fly an aircraft with a lightly damped Dutch roll mode without the addition o

86、f a yaw damper system. An autopilot (flight control system) relieves the pilot of the task of continuously operating the controls to maintain the desired heading, altitud

87、e, and attitude. Freed of this routine task, the pilot can perform other tasks, such as navigation and /or communications, thus reducing the number of crew required 

88、and consequently the operating cost of the aircraft.  控制系統(tǒng)被人們用來擴展自己的能力,補償生理上的限制,或把自己從常規(guī)、單調的工作中解脫出來,或者用來節(jié)省開支。例如在現(xiàn)代航空器中,功率助推裝置可以把飛行員的力量放大,從而克服巨大的空氣阻力推動飛行控制翼面。飛行員的反應速度太慢,如果不附加阻尼偏航系統(tǒng),飛行員就無法通過輕微阻尼的側傾轉向方式來駕駛飛機。自動飛行控制系統(tǒng)把飛行員從保持正確航向、高度和姿態(tài)的連續(xù)操作任務中解脫出來。沒有了這些常規(guī)操作,飛行員可以執(zhí)行其

89、他的任務,如領航或通訊,這樣就減少了所需的機組人員,降低了飛行費用。 In many cases, the design of control system is based on some theory rather than intuition or trail-and -error. Control theory is used for de

90、aling with the dynamic response of a system to commands, regulations, or disturbances. The application of control theory has essentially two phases: dynamic analysis and contr

91、ol system design.  The analysis phase is concerned with determination of the response of a plant (the controlled object) to commands, disturbances, and changes in the pla

92、nt parameters. If the dynamic response is satisfactory, there need be no second phase. If the response is unsatisfactory and modification of the plant is unacceptable, a&

93、#160;design phase is necessary to select the control elements (the contoller) needed to improve the dynamic performance to acceptable levels.        在很多情況下,控制系統(tǒng)的設計是基

94、于某種理論,而不是靠直覺或試湊法??刂葡到y(tǒng)能夠用來處理系統(tǒng)對命令、調節(jié)或擾動的動態(tài)響應??刂评碚摰膽没旧嫌袃蓚€方面:動態(tài) 響應分析和控制系統(tǒng)設計。系統(tǒng)分析關注的是命令、擾動和系統(tǒng)參數(shù)的變化對被控對象響應的決定作用。如某動態(tài)響應是滿足需要的,就不需要第二步了。如果系統(tǒng)不能滿足要求,而且不能改變被控對象,就需要進行系統(tǒng)設計,來選擇使動態(tài)性能達到要求的控制元件。         Control theory itself has two categories: classical and modern. Classical control theory, which had its start during World War II, can 

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論