版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納5篇分享 學(xué)任何一門功課,都不能只有三分鐘熱度,而要一鼓作氣,每天堅(jiān)持,久而久之,不論是狀元還是伊人,都會(huì)向你招手。下面就是我給大家?guī)?lái)的高一數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn),盼望對(duì)大家有所關(guān)心! 高一數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn)1 (1)直線的傾斜角 定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特殊地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°180° (2)直線的斜率 定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度. 當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),
2、不存在. 過(guò)兩點(diǎn)的直線的斜率公式: 留意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90° (2)k與P1、P2的挨次無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得; (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到. (3)直線方程 點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn) 留意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1. 當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1. 斜截式:,直線斜率為k,直線在y軸上的截距為b 兩點(diǎn)式:()直線兩點(diǎn), 截矩
3、式: 其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為. 一般式:(A,B不全為0) 留意:各式的適用范圍特別的方程如: 平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù)); (5)直線系方程:即具有某一共同性質(zhì)的直線 (一)平行直線系 平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù)) (二)垂直直線系 垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù)) (三)過(guò)定點(diǎn)的直線系 ()斜率為k的直線系:,直線過(guò)定點(diǎn); ()過(guò)兩條直線,的交點(diǎn)的直線系方程為 (為參數(shù)),其中直線不在直線系中. (6)兩直線平行與垂直 留意:利用斜率推斷直線的平行與垂直時(shí),要留意斜率的存
4、在與否. (7)兩條直線的交點(diǎn) 相交 交點(diǎn)坐標(biāo)即方程組的一組解. 方程組無(wú)解;方程組有很多解與重合 (8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn) (9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離 (10)兩平行直線距離公式 在任始終線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解. 高一數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn)2 對(duì)數(shù)函數(shù) 對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。 右圖給出對(duì)于不同大小a所表示的函數(shù)圖形: 可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,由于它們互為反函數(shù)。 (1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。 (2)
5、對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。 (3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。 (4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。 (5)明顯對(duì)數(shù)函數(shù)。 高一數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn)3 平面對(duì)量 向量:既有大小,又有方向的量. 數(shù)量:只有大小,沒(méi)有方向的量. 有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度. 零向量:長(zhǎng)度為的向量. 單位向量:長(zhǎng)度等于個(gè)單位的向量. 相等向量:長(zhǎng)度相等且方向相同的向量 向量的運(yùn)算 加法運(yùn)算 AB+BC=AC,這種計(jì)算法則叫做向量加法的三角形法則。 已知兩個(gè)從同一點(diǎn)O動(dòng)身的兩個(gè)向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點(diǎn)的對(duì)角線O
6、C就是向量OA、OB的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。 對(duì)于零向量和任意向量a,有:0+a=a+0=a。 |a+b|a|+|b|。 向量的加法滿意全部的加法運(yùn)算定律。 減法運(yùn)算 與a長(zhǎng)度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍舊是零向量 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 數(shù)乘運(yùn)算 實(shí)數(shù)與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作a,|a|=|a|,當(dāng)0時(shí),a的方向和a的方向相同,當(dāng)0時(shí),a的方向和a的方向相反,當(dāng)=0時(shí),a=0。 設(shè)、是實(shí)數(shù),那么:(1)()a=(a)(2)()a=aa(3)(a±
7、b)=a±b(4)(-)a=-(a)=(-a)。 向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱線性運(yùn)算。 向量的數(shù)量積 已知兩個(gè)非零向量a、b,那么|a|b|cos叫做a與b的數(shù)量積或內(nèi)積,記作a?b,是a與b的夾角,|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。 a?b的幾何意義:數(shù)量積a?b等于a的長(zhǎng)度|a|與b在a的方向上的投影|b|cos的乘積。 兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。 高一數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn)4 指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的
8、定義域?yàn)镽. 留意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) 【函數(shù)的應(yīng)用】 1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。 2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即: 方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn). 3、函數(shù)零點(diǎn)的求法: 求函數(shù)的零點(diǎn): 1(代數(shù)法)求方程的實(shí)數(shù)根; 2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn). 4、二次函數(shù)的零點(diǎn): 二次函數(shù). 1)0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn). 2)=0,方程有兩
9、相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn). 3)0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn). 高一數(shù)學(xué)必修一學(xué)問(wèn)點(diǎn)5 一、集合及其表示 1、集合的含義: “集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師常常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。 所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么全部高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。 2、集合的表示 通常用大寫字母表示集合,用小寫字母表示元素,如集合
10、A=a,b,c。a、b、c就是集合A中的元素,記作aA,相反,d不屬于集合A,記作dÏA。 有一些特別的集合需要記憶: 非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+ 整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R 集合的表示方法:列舉法與描述法。 列舉法:a,b,c 描述法:將集合中的元素的公共屬性描述出來(lái)。如xÎR|x-32,x|x-32,(x,y)|y=x2+1 語(yǔ)言描述法:例:不是直角三角形的三角形 例:不等式x-32的解集是xÎR|x-32或x|x-32 強(qiáng)調(diào):描述法表示集合應(yīng)留意集合的代表元素 A=(x,y)|y=x2+3x+2與B=y|y=x2+3x+2不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。 3、集合的三個(gè)特性 (1)無(wú)序性 指集合中的元素排列沒(méi)有挨次,如集合A=1,2,集合
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特種貴重物品搬運(yùn)協(xié)議細(xì)則
- 2024年版房屋拆遷補(bǔ)償合同
- 2024年版權(quán)許可使用合同協(xié)議
- 中專老師的工作計(jì)劃范文
- 文明校園活動(dòng)策劃書(匯編15篇)
- 入職自我介紹集錦15篇
- 無(wú)源探測(cè)技術(shù)課程設(shè)計(jì)
- 植樹節(jié)活動(dòng)總結(jié)15篇
- 收銀員的辭職報(bào)告范文集合10篇
- 小學(xué)數(shù)學(xué)骨干教師工作計(jì)劃
- 醫(yī)院藥房年終工作總結(jié)
- 整體爬升鋼平臺(tái)模板工程技術(shù)規(guī)程
- 發(fā)動(dòng)機(jī)無(wú)法啟動(dòng)的故障診斷
- 醫(yī)療機(jī)構(gòu)醫(yī)院臨床微生物學(xué)檢驗(yàn)標(biāo)本的采集和轉(zhuǎn)運(yùn)指南
- 國(guó)開電大《員工招聘與配置》形考冊(cè)第一次形考答案
- ODM合作方案教學(xué)課件
- 醫(yī)藥公司知識(shí)產(chǎn)權(quán)
- GB/T 1196-2023重熔用鋁錠
- Revit軟件學(xué)習(xí)實(shí)習(xí)報(bào)告
- 2024版國(guó)開電大本科《行政領(lǐng)導(dǎo)學(xué)》在線形考(形考任務(wù)一至四)試題及答案
- 風(fēng)電教育培訓(xùn)體系建設(shè)
評(píng)論
0/150
提交評(píng)論