數(shù)字量與模擬量_第1頁(yè)
數(shù)字量與模擬量_第2頁(yè)
數(shù)字量與模擬量_第3頁(yè)
數(shù)字量與模擬量_第4頁(yè)
數(shù)字量與模擬量_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、v模擬信號(hào)模擬信號(hào)【Analog Signal】v 定義:在時(shí)間上與數(shù)值上都連續(xù)的信號(hào)。定義:在時(shí)間上與數(shù)值上都連續(xù)的信號(hào)。v 模擬信號(hào)波形:模擬信號(hào)波形:u模擬信號(hào)波形模擬信號(hào)波形t最常見(jiàn)的模擬信號(hào)波最常見(jiàn)的模擬信號(hào)波形就是形就是正弦波正弦波。t正弦波形正弦波形uv數(shù)字信號(hào)數(shù)字信號(hào)【Digital Signal】v 定義:定義:在時(shí)間上和數(shù)值上不連續(xù)的(即離散的)信號(hào)在時(shí)間上和數(shù)值上不連續(xù)的(即離散的)信號(hào)v 數(shù)字信號(hào)波形數(shù)字信號(hào)波形對(duì)數(shù)字信號(hào)進(jìn)行傳輸、處理的電子線路稱為對(duì)數(shù)字信號(hào)進(jìn)行傳輸、處理的電子線路稱為數(shù)字電路數(shù)字電路。v 數(shù)字電路數(shù)字電路u數(shù)字信號(hào)波形t1 0011數(shù)字電路跟模擬電路

2、相比在對(duì)于信號(hào)的傳輸、存儲(chǔ)、數(shù)字電路跟模擬電路相比在對(duì)于信號(hào)的傳輸、存儲(chǔ)、處理方面有很大優(yōu)勢(shì)。處理方面有很大優(yōu)勢(shì)。v二值數(shù)字邏輯和邏輯電平二值數(shù)字邏輯和邏輯電平數(shù)字信號(hào)在時(shí)間上和數(shù)值上都是離散的,常用數(shù)字?jǐn)?shù)字信號(hào)在時(shí)間上和數(shù)值上都是離散的,常用數(shù)字0和和1來(lái)表示,這里的來(lái)表示,這里的0和和1不是十進(jìn)制數(shù)中的數(shù)字,不是十進(jìn)制數(shù)中的數(shù)字,而是而是邏輯邏輯0和和邏輯邏輯1,故稱之為,故稱之為二值數(shù)字邏輯二值數(shù)字邏輯或簡(jiǎn)或簡(jiǎn)稱稱數(shù)字邏輯數(shù)字邏輯。v二值數(shù)字邏輯二值數(shù)字邏輯【Binary Digital Logic】v邏輯電平邏輯電平【Logic level】二值數(shù)字邏輯的兩種狀態(tài)在電路上可以用電子器件

3、二值數(shù)字邏輯的兩種狀態(tài)在電路上可以用電子器件的開(kāi)關(guān)特性(即開(kāi)通和關(guān)斷)來(lái)實(shí)現(xiàn),于是就形成的開(kāi)關(guān)特性(即開(kāi)通和關(guān)斷)來(lái)實(shí)現(xiàn),于是就形成離散信號(hào)離散信號(hào)或或數(shù)字電壓數(shù)字電壓。這些數(shù)字電壓通常用。這些數(shù)字電壓通常用邏輯電邏輯電平平來(lái)表示。來(lái)表示。比如:比如: 電壓電壓二值邏輯二值邏輯電電 平平 2.4V5V 1 H(高電平)(高電平) 0V0.8V 0 L(低電平)(低電平)v模擬量的數(shù)字表示模擬量的數(shù)字表示數(shù)字量?jī)?yōu)于模擬量之處是:數(shù)字量更便于存儲(chǔ)、分?jǐn)?shù)字量?jī)?yōu)于模擬量之處是:數(shù)字量更便于存儲(chǔ)、分析和傳輸。因此常將模擬信號(hào)轉(zhuǎn)換為數(shù)字信號(hào),通析和傳輸。因此常將模擬信號(hào)轉(zhuǎn)換為數(shù)字信號(hào),通過(guò)模數(shù)轉(zhuǎn)換器(即過(guò)

4、模數(shù)轉(zhuǎn)換器(即A/D轉(zhuǎn)換器:轉(zhuǎn)換器:【Analog/Digital Converter】)來(lái)實(shí)現(xiàn)。有時(shí)還需將數(shù)字信號(hào)還原)來(lái)實(shí)現(xiàn)。有時(shí)還需將數(shù)字信號(hào)還原為模擬信號(hào),可通過(guò)數(shù)模轉(zhuǎn)換器(即為模擬信號(hào),可通過(guò)數(shù)模轉(zhuǎn)換器(即D/A轉(zhuǎn)換器:轉(zhuǎn)換器:【Digital/Analog Converter】 )來(lái)實(shí)現(xiàn)。)來(lái)實(shí)現(xiàn)。模擬信號(hào)模擬信號(hào)數(shù)字信號(hào)數(shù)字信號(hào)A/D轉(zhuǎn)換器轉(zhuǎn)換器D/A轉(zhuǎn)換器轉(zhuǎn)換器v數(shù)制數(shù)制【Number Systems】數(shù)制概述數(shù)制概述v數(shù)制數(shù)制:多位數(shù)碼每一位的構(gòu)成以及從低位到高位的進(jìn)位規(guī)多位數(shù)碼每一位的構(gòu)成以及從低位到高位的進(jìn)位規(guī)則。則。v基數(shù)【基數(shù)【Base Or Radix】:基數(shù),就是

5、在該數(shù)制中可能用基數(shù),就是在該數(shù)制中可能用到的數(shù)碼個(gè)數(shù)。到的數(shù)碼個(gè)數(shù)。v位權(quán)(位的權(quán)數(shù))【位權(quán)(位的權(quán)數(shù))【W(wǎng)eight】:在某一數(shù)制中,每一位的在某一數(shù)制中,每一位的大小都對(duì)應(yīng)著該位上的數(shù)碼乘上一個(gè)固定的數(shù),這個(gè)固定大小都對(duì)應(yīng)著該位上的數(shù)碼乘上一個(gè)固定的數(shù),這個(gè)固定的數(shù)就是這一位的權(quán)數(shù)。權(quán)數(shù)是一個(gè)冪。的數(shù)就是這一位的權(quán)數(shù)。權(quán)數(shù)是一個(gè)冪。又如:又如:(209.04)10 2102 0101910001014 102 數(shù)碼為:數(shù)碼為:09;基數(shù)是;基數(shù)是10【Base-10】 運(yùn)算規(guī)律運(yùn)算規(guī)律:逢十進(jìn)一,即:逢十進(jìn)一,即:9110。 十進(jìn)制數(shù)的權(quán)展開(kāi)式十進(jìn)制數(shù)的權(quán)展開(kāi)式:由此可見(jiàn),同樣的數(shù)碼在不

6、同的數(shù)位上代表的數(shù)值不同。同樣的數(shù)碼在不同的數(shù)位上代表的數(shù)值不同。任意一個(gè)十進(jìn)制數(shù)都可以表示為各個(gè)數(shù)位上的數(shù)碼與其對(duì)任意一個(gè)十進(jìn)制數(shù)都可以表示為各個(gè)數(shù)位上的數(shù)碼與其對(duì)應(yīng)的權(quán)的乘積之和,稱應(yīng)的權(quán)的乘積之和,稱權(quán)展開(kāi)式權(quán)展開(kāi)式。如:如:(5555)105103 510251015100103、102、101、100稱為十進(jìn)制的權(quán)。各數(shù)位的權(quán)是10的冪。數(shù)碼為:數(shù)碼為:0、1;基數(shù)是;基數(shù)是2 【Base-2】 。運(yùn)算規(guī)律:逢二進(jìn)一,即:運(yùn)算規(guī)律:逢二進(jìn)一,即:1110。二進(jìn)制數(shù)的權(quán)展開(kāi)式:二進(jìn)制數(shù)的權(quán)展開(kāi)式:如:如:(101.01)2 122 0211200211 22 (5.25)10加法規(guī)則:

7、加法規(guī)則:0+0=0,0+1=1,1+0=1,1+1=10乘法規(guī)則:乘法規(guī)則:00=0, 01=0 ,10=0,11=1運(yùn)算運(yùn)算規(guī)則規(guī)則各數(shù)位的權(quán)是的冪二進(jìn)制數(shù)只有二進(jìn)制數(shù)只有0和和1兩個(gè)數(shù)碼,它的每一位都可以用電子元件來(lái)兩個(gè)數(shù)碼,它的每一位都可以用電子元件來(lái)實(shí)現(xiàn),且運(yùn)算規(guī)則簡(jiǎn)單,相應(yīng)的運(yùn)算電路也容易實(shí)現(xiàn)。實(shí)現(xiàn),且運(yùn)算規(guī)則簡(jiǎn)單,相應(yīng)的運(yùn)算電路也容易實(shí)現(xiàn)。 數(shù)碼為:數(shù)碼為:07;基數(shù)是;基數(shù)是8 【Base-8】 。 運(yùn)算規(guī)律:逢八進(jìn)一,即:運(yùn)算規(guī)律:逢八進(jìn)一,即:7110。 八進(jìn)制數(shù)的權(quán)展開(kāi)式:八進(jìn)制數(shù)的權(quán)展開(kāi)式:各數(shù)位的權(quán)是8的冪 如:如:(207.04)10 282 0817800814

8、82 (135.0625)10 數(shù)碼為:數(shù)碼為:09、A(10)、B(11)、C(12)、D(13)、E(14)、F(15)。 基數(shù)是基數(shù)是16 【Base-16】 。 運(yùn)算規(guī)律:逢十六進(jìn)一,即:運(yùn)算規(guī)律:逢十六進(jìn)一,即:F110。 十六進(jìn)制數(shù)的權(quán)展開(kāi)式:十六進(jìn)制數(shù)的權(quán)展開(kāi)式:各數(shù)位的權(quán)是16的冪如:如:(D8.A)16 13161 816010 161(216.625)10 一般地,N N進(jìn)制需要用到N N個(gè)數(shù)碼,基數(shù)是N N;運(yùn)算規(guī)律為逢N N進(jìn)一。 如果一個(gè)N N進(jìn)制數(shù)M M包含位整數(shù)和位小數(shù),即 (M)(M)N N=(a=(an-1 n-1 a an-2 n-2 a a1 1 a a0

9、 0 a a1 1 a a2 2 a am m) )N N則該數(shù)的權(quán)展開(kāi)式為: (M)(M)N Na an-1n-1N Nn-1n-1a an-2n-2N Nn-2n-2a a1 1N N1 1a a0 0 N N0 0 a a1 1N N-1-1a a2 2N N-2-2a am mN N-m-m 由權(quán)展開(kāi)式很容易將一個(gè)N N進(jìn)制數(shù)轉(zhuǎn)換為十進(jìn)制數(shù)。v非十進(jìn)制數(shù)轉(zhuǎn)換為十進(jìn)制數(shù)非十進(jìn)制數(shù)轉(zhuǎn)換為十進(jìn)制數(shù) 方法:方法:將非十進(jìn)制數(shù)采用按權(quán)展開(kāi)相加按權(quán)展開(kāi)相加的方法即得對(duì)應(yīng) 十進(jìn)制數(shù)。例例1:(101.01)21220 211 200 2-11 2-2 (5.25)10例例2:(207.04)8282

10、0 817 800 8-14 8-2 (135.0625)10例例3:(D8.A)1613 1618 16010 16-1(216.625)102、數(shù)制轉(zhuǎn)換、數(shù)制轉(zhuǎn)換 方法:方法:將整數(shù)部分和小數(shù)部分分別進(jìn)行轉(zhuǎn)換。 整數(shù)部分采用基數(shù)連除取余法。要將十進(jìn)制數(shù)轉(zhuǎn) 換為幾進(jìn)制就除以幾,先得到的余數(shù)為 低位,后得到的余數(shù)為高位。 小數(shù)部分采用基數(shù)連乘取整法。要將其轉(zhuǎn)換為幾 進(jìn)制就乘以幾,先得到的整數(shù)為高位, 后得到的整數(shù)為低位。解:整數(shù)部分:解:整數(shù)部分:352172824222120110001低位低位高位高位小數(shù)部分:小數(shù)部分:0.8521.7 1 0.7 21.4 1 0.4 20.8 0高位高

11、位低位低位題目要求只保留三位小數(shù)題目要求只保留三位小數(shù)不再繼續(xù)連乘取整了。不再繼續(xù)連乘取整了。 (35.85)10(100011.110)2 解:整數(shù)部分:解:整數(shù)部分:938118180531低位低位高位高位小數(shù)部分:小數(shù)部分:0.7586.00 6 (93.75)10(135.6)8 (93.75)10=(?)16整數(shù)部分:整數(shù)部分:93165160D5小數(shù)部分:小數(shù)部分:0.751612.00 C (93.75)10(5D.C)16 低位低位高位高位 方法方法:將二進(jìn)制數(shù)由小數(shù)點(diǎn)開(kāi)始,整數(shù)部分向左,小數(shù)部分 向右,每3位(或4位)分成一組,不夠3位(或4位) 補(bǔ)零,則每位二進(jìn)制數(shù)便是一位

12、八進(jìn)制數(shù)(或十六進(jìn) 制數(shù))。例例6:(1101010.01)2=(?)8=(?)16解:解: (1101010.01)2=(001 101 010 . 010)2=(152.2)8 (1101010.01)2=(0110 1010 . 0100)2=(6A.4)16 方法方法:將每位八進(jìn)制數(shù)(或十六進(jìn)制數(shù))用3位(或4位) 二進(jìn)制數(shù)表示。例例7:(374.26)8=(?)2解:解:(374.26)8=(011 111 100 . 010 110)2= (11 111 100 . 010 11)2例例8:(AF4.76)16=(?)2解:解: (AF4.76)16 =(1010 1111 010

13、0 . 0111 0110)2 = (1010 1111 0100 . 0111 011)2 方法:方法:用二進(jìn)制數(shù)作為中介。例例9:(674.3)8=(?)16解:解: (674.3)8=(110 111 100 . 011)2=(0001 1011 1100 . 0110)2=(1BC.6)16例例10:(3AF.E)16=(?)8解:解: (3AF.E)16 =(0011 1010 1111 . 1110)2 =(001 110 101 111 . 111)2 =(1657.7)8八進(jìn)制八進(jìn)制二進(jìn)制二進(jìn)制二進(jìn)制二進(jìn)制十六進(jìn)制十六進(jìn)制十六進(jìn)制十六進(jìn)制二進(jìn)制二進(jìn)制二進(jìn)制二進(jìn)制八進(jìn)制八進(jìn)制數(shù)字

14、系統(tǒng)只能識(shí)別數(shù)字系統(tǒng)只能識(shí)別0 0和和1 1,怎樣才能表示更多的,怎樣才能表示更多的數(shù)碼、符號(hào)、字母呢?數(shù)碼、符號(hào)、字母呢?用編碼可以解決此問(wèn)題用編碼可以解決此問(wèn)題。 用一定位數(shù)的二進(jìn)制數(shù)來(lái)表示十進(jìn)制數(shù)碼、字母、用一定位數(shù)的二進(jìn)制數(shù)來(lái)表示十進(jìn)制數(shù)碼、字母、符號(hào)等信息稱為編碼。符號(hào)等信息稱為編碼。 用以表示十進(jìn)制數(shù)碼、字母、符號(hào)等信息的一定用以表示十進(jìn)制數(shù)碼、字母、符號(hào)等信息的一定位數(shù)的二進(jìn)制數(shù)稱為代碼。位數(shù)的二進(jìn)制數(shù)稱為代碼。v 問(wèn)題的提出:?jiǎn)栴}的提出:v 編碼編碼定義:定義:v 代碼代碼定義:定義: 8421 BCD碼碼:用四位自然二進(jìn)制碼中的前十個(gè):用四位自然二進(jìn)制碼中的前十個(gè) 碼字來(lái)表示

15、十進(jìn)制數(shù)碼,因各位的權(quán)值依次為碼字來(lái)表示十進(jìn)制數(shù)碼,因各位的權(quán)值依次為8、4、2、1,故稱,故稱8421 BCD碼碼。幾種常見(jiàn)的碼幾種常見(jiàn)的碼用用4 4位二進(jìn)制數(shù)位二進(jìn)制數(shù)b b3 3b b2 2b b1 1b b0 0來(lái)表示十進(jìn)制數(shù)中的來(lái)表示十進(jìn)制數(shù)中的 0 0 9 9 十個(gè)數(shù)碼。十個(gè)數(shù)碼。 24212421碼:碼: 余余3碼:碼:其權(quán)值依次為其權(quán)值依次為2、4、2、1;由由8421碼加碼加0011得到;得到; 格雷碼:格雷碼:是一種循環(huán)碼,其特點(diǎn)是任何相鄰的兩個(gè)是一種循環(huán)碼,其特點(diǎn)是任何相鄰的兩個(gè)碼字,僅有一位代碼不同,其它位相同。碼字,僅有一位代碼不同,其它位相同。通常,人們可以通過(guò)鍵盤(pán)

16、上的字母、符號(hào)和數(shù)值通常,人們可以通過(guò)鍵盤(pán)上的字母、符號(hào)和數(shù)值向計(jì)算機(jī)發(fā)送數(shù)據(jù)和指令,每個(gè)鍵符可以用一個(gè)二進(jìn)向計(jì)算機(jī)發(fā)送數(shù)據(jù)和指令,每個(gè)鍵符可以用一個(gè)二進(jìn)制碼表示,這種碼就是制碼表示,這種碼就是ASC碼。碼。它是用它是用7位二進(jìn)制碼位二進(jìn)制碼表示的表示的。幾種常見(jiàn)的碼(續(xù))幾種常見(jiàn)的碼(續(xù))比如:鍵盤(pán)上的比如:鍵盤(pán)上的 AZ:41H5AH az:61H7AH 09:30H39H都是轉(zhuǎn)換成十六進(jìn)制描述的!都是轉(zhuǎn)換成十六進(jìn)制描述的!b3b2b1b023222120代碼對(duì)應(yīng)的十進(jìn)制數(shù)代碼對(duì)應(yīng)的十進(jìn)制數(shù)自然二進(jìn)制碼自然二進(jìn)制碼二十進(jìn)制數(shù)(二十進(jìn)制數(shù)(BCD碼)碼)8421碼碼2421碼碼余余3碼碼00

17、000000001111001022200113330010044410101552011066301117741000885100199610101071011115811001269110113711101481111159 b3 b2 b1 b0 G3 G2 G1 G00 0 0 00 0 0 00 0 0 10 0 0 10 0 1 00 0 1 10 0 1 10 0 1 00 1 0 00 1 1 00 1 0 10 1 1 10 1 1 00 1 0 10 1 1 1 0 1 0 01 0 0 01 1 0 01 0 0 1 1 1 0 11 0 1 01 1 1 11 0 1

18、11 1 1 01 1 0 01 0 1 01 1 0 11 0 1 11 1 1 01 0 0 11 1 1 11 0 0 01 1、基本運(yùn)算、基本運(yùn)算 二進(jìn)制數(shù)的算術(shù)運(yùn)算和十進(jìn)制數(shù)的算術(shù)運(yùn)算規(guī)則基本相同,唯一區(qū)別在于二進(jìn)制數(shù)是“逢二進(jìn)一”及“借一當(dāng)二”,而不是“逢十進(jìn)一”及 “借一當(dāng)十”。 例如:例如:v 返回1原碼:符號(hào)位用0、1表示,0表示正數(shù),1表示負(fù)數(shù),以下各位表示數(shù)值。3補(bǔ)碼:正數(shù)的補(bǔ)碼等于原碼,負(fù)數(shù)的補(bǔ)碼:符號(hào)位不變,以下各位按位取反,加1。2反碼:正數(shù)的反碼等于原碼,負(fù)數(shù)的反碼:符號(hào)位不變,以下各位按位取反。解: 原碼 反碼 補(bǔ)碼 0001101000011010 00011010 1001101011100101 11100110 0010110100101101 00101101 101011

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論