版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、電工技術第第5章章 動態(tài)電路的時域分析動態(tài)電路的時域分析引例引例閃光燈電路閃光燈電路 充放電問題?充放電問題?延時問題?延時問題?繼電器電路繼電器電路 RC延時電路延時電路 本章教學內(nèi)容本章教學內(nèi)容5.1 電容元件電容元件 5.2 電感元件電感元件 5.3 動態(tài)電路方程動態(tài)電路方程5.4 一階電路的零輸入響應一階電路的零輸入響應5.5 一階電路的零狀態(tài)響應一階電路的零狀態(tài)響應5.6 一階電路的全響應及三要素法一階電路的全響應及三要素法本章重點內(nèi)容本章重點內(nèi)容u 電容元件和電感元件的特性電容元件和電感元件的特性u 動態(tài)電路方程的列寫、求解及初始條件的確定動態(tài)電路方程的列寫、求解及初始條件的確定u
2、 一階電路的零輸入響應、零狀態(tài)響應和全響應一階電路的零輸入響應、零狀態(tài)響應和全響應u 一階電路的三要素法一階電路的三要素法第第5章章 動態(tài)電路的時域分析動態(tài)電路的時域分析 前面四章討論的內(nèi)容主要局限于電阻電路。實際前面四章討論的內(nèi)容主要局限于電阻電路。實際上,大量實際電路并不能只用電阻和受控源來構建它上,大量實際電路并不能只用電阻和受控源來構建它們的模型,還必須包含有們的模型,還必須包含有電容元件電容元件和和電感元件電感元件等。電等。電容和電感元件都能夠儲存能量,稱為容和電感元件都能夠儲存能量,稱為儲能元件儲能元件,其端,其端口電壓口電壓 電流關系要用微分方程來描述,所以又稱為電流關系要用微分
3、方程來描述,所以又稱為動動態(tài)元件態(tài)元件。 含有動態(tài)元件(即儲能元件)的電路稱為含有動態(tài)元件(即儲能元件)的電路稱為動態(tài)電動態(tài)電路路。動態(tài)電路是用微分方程來描述的,所以對這種電。動態(tài)電路是用微分方程來描述的,所以對這種電路的分析要涉及對微分方程的求解。路的分析要涉及對微分方程的求解。 在動態(tài)電路分析中,激勵和響應都表示為時間的在動態(tài)電路分析中,激勵和響應都表示為時間的函數(shù),采用微分方程求解電路和分析電路的方法,稱函數(shù),采用微分方程求解電路和分析電路的方法,稱時域分析方法時域分析方法。5.1 電容元件電容元件u 電容元件的定義:電容元件的定義:一個二端元件,如果在任一時刻一個二端元件,如果在任一時
4、刻t,它所儲存的電荷它所儲存的電荷q和它的端電壓和它的端電壓u之間的關系是由之間的關系是由q u平面上的一條曲線所確定,則此二端元件稱為電容平面上的一條曲線所確定,則此二端元件稱為電容元件。這條曲線稱庫伏特性曲線。元件。這條曲線稱庫伏特性曲線。_+ qqu5.1 電容元件(續(xù)電容元件(續(xù)1)u線性時不變電容元件:線性時不變電容元件:任何時刻,電容元件極板上任何時刻,電容元件極板上的電荷的電荷q與電壓與電壓 u 成正比。成正比。q-u 特性曲線是過原點的特性曲線是過原點的直線。直線。Cuq 電路符號電路符號單位:法單位:法拉拉(F)1F=106 F,1 F =106pF電壓電流關系電壓電流關系t
5、uCtCutqiddd)(ddd當電壓和電流取關聯(lián)參考方向當電壓和電流取關聯(lián)參考方向動態(tài)元件動態(tài)元件 u為直流時,電容相當于開路為直流時,電容相當于開路隔直通交隔直通交 tiCtud)(1)(tttiCdiCtu00d)(1)(1)(000d)(1)()(ttiCtututt“記憶記憶”特性特性 5.1 電容元件(續(xù)電容元件(續(xù)2)VCR的微分形式的微分形式 VCR的積分形式的積分形式 5.1 電容元件(續(xù)電容元件(續(xù)3)電容電壓的連續(xù)性質(zhì)電容電壓的連續(xù)性質(zhì)000d)(1)()(ttiCtututtCCC當電容電流有界時,當電容電流有界時, )()(tutuCC當流過電容的電流有界時,電容電壓
6、不能躍變。 儲能儲能)(21)(2tCutWC5.1 電容元件(續(xù)電容元件(續(xù)4)幾種常見電容器的外形圖幾種常見電容器的外形圖(a)空氣可變電容器空氣可變電容器 (b)紙介電容器紙介電容器 (c)云母電容器云母電容器 (d)陶瓷電容陶瓷電容器器 (e)鋁電解電容鋁電解電容器器 (f)貼片陶瓷電容貼片陶瓷電容器器 實際電容器的模型實際電容器的模型5.1 電容元件(續(xù)電容元件(續(xù)5)5.1 電容元件(續(xù)電容元件(續(xù)6)例例1 如圖如圖(a)所示電路中電容與電壓源連接,已知電壓源所示電路中電容與電壓源連接,已知電壓源電壓波形如圖電壓波形如圖(b)所示,試求電容電流及電容的儲能。所示,試求電容電流及電
7、容的儲能。解解 由圖由圖(b)所示波形曲線,可求得電壓源電壓的表達式為所示波形曲線,可求得電壓源電壓的表達式為4 (00.25s)1 (0.25s0.5s)41 (0.5s0.75s)88 (0.75s1s)tttutttt 5.1 電容元件(續(xù)電容元件(續(xù)7)則電容電流為:則電容電流為:電容電流隨時間變化的波形曲線電容電流隨時間變化的波形曲線 4 (00.25s)0 (0.25s0.5s)4 (0.5s0.75s)8 (0.75s1s)ttduiCtdtt tuCdd5.1 電容元件(續(xù)電容元件(續(xù)8)則電容的儲能為則電容的儲能為:22228 (00.25s)0.5 (0.25s0.5s)1
8、2840.5 (0.5s0.75s)326432 (0.75s1s)CtttwCutttttt 電容儲能隨時間變化的波形曲線電容儲能隨時間變化的波形曲線 例例2 如圖如圖(a)所示電路中電容與電流源連接,已知電流所示電路中電容與電流源連接,已知電流源電流波形如圖源電流波形如圖(b)所示,試求電容電壓及電容吸收的所示,試求電容電壓及電容吸收的功率。假設功率。假設u(0)=0V。解解:由圖由圖(b)所示波形曲線,可求得電流的表達式為所示波形曲線,可求得電流的表達式為2 (00.5s)21 (0.5s1s)ttitt 5.1 電容元件(續(xù)電容元件(續(xù)9)5.1 電容元件(續(xù)電容元件(續(xù)10)當當0t
9、0.5s時時 2001(0)( )2ttuuiddtC 當當0.5st1s時時220.50.51(0.5)( )0.5(21)0.5ttuuiddttC 電容電壓隨時間變化的曲線如圖中實線所示電容電壓隨時間變化的曲線如圖中實線所示5.1 電容元件(續(xù)電容元件(續(xù)11)3222)()()(ttttitutp電容吸收的功率為電容吸收的功率為當當0t0時,電容兩端電時,電容兩端電壓壓uC和電流和電流iC,并繪出它們隨時間變化的曲線。,并繪出它們隨時間變化的曲線。 解 (1) 求初始值求初始值uC(0+)作作t=0時的電路如圖時的電路如圖 (b)所示所示 ,求得求得 (a)根據(jù)換路定則,得根據(jù)換路定則
10、,得2V6V633)(0Cu2V)(0)(0CCuu電容開路(b)5.6 一階電路的一階電路的全響應及三要素法(續(xù)全響應及三要素法(續(xù)6) (2) 求穩(wěn)態(tài)值求穩(wěn)態(tài)值uC () 作換路后作換路后t=時的等效時的等效電路如圖電路如圖 (c),求得,求得(3) 求時間常數(shù)求時間常數(shù) =ReqC,Req為換路后從電容兩端看進去的等效電阻。為換路后從電容兩端看進去的等效電阻。其等效電路如圖其等效電路如圖(d)所示,求得所示,求得 (d) (c) (a)23636eqR2V6V633)(Cu5.6 一階電路的一階電路的全響應及三要素法(續(xù)全響應及三要素法(續(xù)7)(4)求求uC、iC 將將uC (0+)=2
11、V、uC ()=2V和和=1s 代入三要素公式代入三要素公式則則畫出畫出uC、iC的波形,如圖的波形,如圖(e)所示。所示。 0 V e42e222 )e()0()( tuuuutttCCCC)(0A e2 e42(dd21ddt ttuCittCC)5.6 一階電路的一階電路的全響應及三要素法(續(xù)全響應及三要素法(續(xù)8) (e)5.6 一階電路的一階電路的全響應及三要素法(續(xù)全響應及三要素法(續(xù)9)解解 (1) 求初始值求初始值i(0+) 、uL(0+)作作t=0+時的電路如圖時的電路如圖 (b)所示所示 。(a)(b)根據(jù)換路定則,得根據(jù)換路定則,得 iL (0+)= iL(0) =2A例
12、例2 如圖如圖(a)所示,開關合在所示,開關合在1時電路已經(jīng)穩(wěn)定。時電路已經(jīng)穩(wěn)定。t=0時,開關由時,開關由1合向合向2,用三要素法求,用三要素法求t0時的時的i和和uL。開關在開關在1位置時,電流位置時,電流iL(0) 為為可求得可求得 i (0+)= (22)A=02A A48)(0Li4VV)0222()(0Lu電感代之以短路電感代之以電流源5.6 一階電路的一階電路的全響應及三要素法(續(xù)全響應及三要素法(續(xù)10) 作換路后作換路后t=時的等效電路時的等效電路如圖如圖(c)。求得。求得 (3)求時間常數(shù)求時間常數(shù) 換路后從電感兩端看進去換路后從電感兩端看進去的電路如圖的電路如圖(d)所示
13、。求得所示。求得 (d) (c) (a) (2) 求穩(wěn)態(tài)值求穩(wěn)態(tài)值i() 、uL()1A 2A222)(i42)(2eqR 0)(Lu電感代之以短路0.025ss40.1eqRL5.6 一階電路的一階電路的全響應及三要素法(續(xù)全響應及三要素法(續(xù)11)(4)求求i 、uL 將將i (0+)、i () 和和uL (0+)、uL ()及及代入三要素公式,代入三要素公式,可得可得 tiiiitttA e(1e ) 10(1 e)()0()(40025. 0)0 Ve4Ve040 e)()0()(400.025 tuuuutttLLLL)(5.6 一階電路的一階電路的全響應及三要素法(續(xù)全響應及三要素
14、法(續(xù)12)例例3 電路如圖所示,換路前電路已處于穩(wěn)態(tài),用三要素電路如圖所示,換路前電路已處于穩(wěn)態(tài),用三要素法求換路后的法求換路后的uC(t)。 解解:(1) 求初始值求初始值 V8)0()0(CCuu(2) 求穩(wěn)態(tài)值求穩(wěn)態(tài)值 V122224)(Cu(3) 求時間常數(shù)求時間常數(shù) 10244eqRs11 . 010eqCR(4) 應用三要素公式得應用三要素公式得 0V)e2012(e )128(12)(ttuttC5.6 一階電路的一階電路的全響應及三要素法(續(xù)全響應及三要素法(續(xù)13)例例4 電路如圖所示,換路前電路已處于穩(wěn)態(tài),用三要素電路如圖所示,換路前電路已處于穩(wěn)態(tài),用三要素法求換路后的法
15、求換路后的iL、i1和和i2。 解解:A2510)0()0(LLiiA6520510)(Lis2 . 055555 . 0RL0A)e46(e )62(6)(55ttittL0e10)5()e4(5 . 0dd)(55ttiLtuttLL0A)e22(5)(10)(51ttutitL0A)e24(5)(20)(52ttutitL測試題測試題題題1 求換路后的電壓求換路后的電壓u1。測試題測試題題題2 求換路后的電壓求換路后的電壓u。)0(St368F02. 0uV18V9Cu測試題測試題題題3 求換路后的電壓求換路后的電壓u1。測試題測試題題題4 圖示電路原處于穩(wěn)態(tài),圖示電路原處于穩(wěn)態(tài),t=0時時r突然由突然由10變?yōu)樽優(yōu)?。求。求t0時的電壓時的電壓uC。工程題工程題閃光燈電路閃光燈電路工程題工程題警示燈電路警示燈電路仿真題仿真題題題1 電路如圖所示,已知電路如圖所示,已知u
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西省上饒市2024-2025學年度第一學期八年級上冊生物期末綠色評價試卷(含答案)
- 安徽省蕪湖市2024-2025學年高一上學期期末教學質(zhì)量監(jiān)控歷史試卷(含答案)
- 11年1月貨幣銀行學試卷與答案
- 棉紗原料倉庫項目可行性研究報告寫作模板-申批備案
- 數(shù)學-遼寧省大連市2024-2025學年高三上學期期末雙基測試卷及答案
- 2024青苔離婚經(jīng)濟補償協(xié)議書2篇
- 2024版服務協(xié)議續(xù)簽格式樣本版
- 福建省南平市金橋?qū)W校2021-2022學年高一語文聯(lián)考試卷含解析
- 2024鋁扣板吊頂工程節(jié)能評估與驗收合同協(xié)議3篇
- 2025廠房租賃居間服務及市場調(diào)研協(xié)議3篇
- 中試部培訓資料
- 【可行性報告】2024年第三方檢測相關項目可行性研究報告
- 藏醫(yī)學專業(yè)生涯發(fā)展展示
- 信息安全保密三員培訓
- 2024政務服務綜合窗口人員能力與服務規(guī)范考試試題
- JT∕T 1477-2023 系列2集裝箱 角件
- 《陸上風電場工程設計概算編制規(guī)定及費用標準》(NB-T 31011-2019)
- 光伏電站繼電保護運行規(guī)程
- 承兌匯票臺帳模版
- 地下管道頂管施工方案(非常全)
- 有色金屬工業(yè)安裝工程質(zhì)量檢驗評定標準(共1004頁)
評論
0/150
提交評論