![量子金融工程模型——金融物理學(xué)論文系列_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/3/02557977-4001-418a-a9c5-a6989c6e79a7/02557977-4001-418a-a9c5-a6989c6e79a71.gif)
![量子金融工程模型——金融物理學(xué)論文系列_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/3/02557977-4001-418a-a9c5-a6989c6e79a7/02557977-4001-418a-a9c5-a6989c6e79a72.gif)
![量子金融工程模型——金融物理學(xué)論文系列_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/3/02557977-4001-418a-a9c5-a6989c6e79a7/02557977-4001-418a-a9c5-a6989c6e79a73.gif)
![量子金融工程模型——金融物理學(xué)論文系列_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/3/02557977-4001-418a-a9c5-a6989c6e79a7/02557977-4001-418a-a9c5-a6989c6e79a74.gif)
![量子金融工程模型——金融物理學(xué)論文系列_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-3/3/02557977-4001-418a-a9c5-a6989c6e79a7/02557977-4001-418a-a9c5-a6989c6e79a75.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、PhysicaA389(2010)57695775ContentslistsavailableatScienceDirectPhysicaAjournalhomepage:AquantummodelforthestockmarketChaoZhanga,LuHuangbabSchoolofPhysicsandEngineering,SunYat-senUniversity,Guangzhou510275,ChinaSchoolofEconomicsandBusinessAdministration,ChongqingUniversity,Chongqing400044,Chinaarticle
2、infoabstractBeginningwithseveralbasichypothesesofquantummechanics,wegiveanewquantummodelineconophysics.Inthismodel,wedefinewavefunctionsandoperatorsofthestockmarkettoestablishtheSchrödingerequationforstockprice.Basedonthistheoreticalframework,anexampleofadriveninfinitequantumwellisconsidered,in
3、whichweuseacosinedistributiontosimulatethestateofstockpriceinequilibrium.AfteraddinganexternalfieldintotheHamiltoniantoanalyticallycalculatethewavefunction,thedistributionandtheaveragevalueoftherateofreturnareshown.©2010ElsevierB.V.Allrightsreserved.Articlehistory:Received12April2010Receivedinr
4、evisedform27August2010Availableonline18September2010Keywords:EconophysicsQuantumfinanceStockmarketQuantummodelStockpriceRateofreturn1.IntroductionThestudyofeconophysicsoriginatedinthe1990s1.Somephysicistsfoundthatafewmodelsofstatisticalphysicscouldbeusedtodescribethecomplexityoffinancialmarkets2,3.N
5、owadaysmostoftheeconophysicstheoriesareestablishedonthebasisofstatisticalphysics.Statisticalphysicsisonlyonebranchofphysics.Afterseveralyearsdevelopmentofeconophysics,somephysicistsbegantouseotherphysicaltheoriestostudyeconomics.Thequantumtheoryisoneofthemostimportanttheoriesincontemporaryphysics.It
6、wasthefirsttimethatthequantumtheorywasappliedtothefinancialmarketswhensomeoneusedthequantumfieldtheorytomakeportfoliosafinancialfield4,5,inwhichpathintegralsanddifferentialmanifoldswereintroducedasthetoolstodescribethechangeoffinancialmarketsaftergaugetransformation.Thisideaisthesameastheessenceofth
7、estochasticanalysisinfinance.Therearesomeotherinterestingquantummodels.Forinstance,Schadenoriginallydescribedassetsandcashheldbytheinvestorasawavefunctiontomodelthefinancialmarkets,whichwasdifferentfromtheusualfinancialmethodsusingthechangeoftheassetpricetobethedescription6.Inaddition,peoplepaidmore
8、attentiontothequantumgametheoryandthatwasusefulintradingstrategies7,8.Inrecentyears,anincreasingnumberofquantummodelshavebeenappliedtofinance915,whichattractedgreatattention.Inthispaper,westartfromanewapproachtoexplorethequantumapplicationtothestockmarket.InSection2webeginfromseveralbasichypotheseso
9、fquantummechanicstoestablishanewquantumfinancemodel,whichcanbeusedtostudythedynamicsofstockprice.InSection3asimpleHamiltonianofastockisgiven.Bysolvingthecorrespondingpartialdifferentialequation,wequantitativelydescribethevolatilityofthestockintheChinesestockmarketunderthenewframeworkofquantumfinance
10、theory.AconclusionisillustratedinSection4.Correspondingauthor.E-mailaddress:zhang_chao(C.Zhang).0378-4371/$seefrontmatter©2010ElsevierB.V.Allrightsreserved.doi:10.1016/j.physa.2010.09.0085770C.Zhang,L.Huang/PhysicaA389(2010)576957752.ThequantummodelQuantummechanicsisthetheorydescribingthemicro-
11、world.Nowthistheoryistobeappliedinthestockmarket,inwhichthestockindexisbasedonthestatisticsofthesharepricesofmanyrepresentativestocks.Ifweregardtheindexasamacro-scaleobject,itisreasonabletotakeeverystock,whichconstitutestheindex,asamicrosystem.Thestockisalwaystradedatcertainprices,whichpresentsitsco
12、rpuscularproperty.Meanwhile,thestockpricefluctuatesinthemarket,whichpresentsthewaveproperty.Duetothiswaveparticledualism,wesupposethemicro-scalestockasaquantumsystem.Rulesaredifferentbetweenthequantumandclassicalmechanics.Inordertodescribethequantumcharactersofthestock,wearegoingtobuildapricemodelon
13、thebasichypothesesofquantummechanics.2.1.StatevectorintheHilbertspaceInthefirsthypothesisofquantummechanics,thevectorcalledwavefunctionintheHilbertspacedescribesthestateofthequantumsystem.Beingdifferentfrompreviousquantumfinancemodels6,9,herewetakethesquaremodulusofthewavefunction(,t)asthepricedistr
14、ibution,wheredenotesthestockpriceandtisthetime.Duetothewavepropertyofthestock,thewavefunctionintheso-calledpricerepresentationcanbeexpressedbyDiracnotationsas|=n|ncn,(1)where|nisthepossiblestateofthestocksystemandthecoefficientcn=n|.Itisexactlythesuperpositionprincipleofquantummechanics,whichhasbeen
15、studiedbyShi16andPiotrowskiandSladkowski17inthestockmarket.Asaresult,thestateofthestockpricebeforetradingshouldbeawavepacket,orratheradistribution,whichisthesuperpositionofitsvariouspossiblestateswithdifferentprices.Undertheinfluenceofexternalfactors,investorsbuyorsellstocksatsomeprice.Suchatradingp
16、rocesscanbeviewedasaphysicalmeasurementoranobservation.Asaresult,thestateofthestockturnstobeoneofthepossiblestates,whichhasacertainprice,i.e.thetradingprice.Inthiscase,|cn|2denotestheappearanceprobabilityofeachstate.Inthestatisticalinterpretationofthewavefunction,|(,t)|2istheprobabilitydensityofthes
17、tockpriceattimet,andP(t)=b|(,t)|2dpa(2)istheprobabilityofthestockpricebetweenaandbattimet.Actuallythefluctuationofthestockpricecanbeviewedastheevolutionofthewavefunction(,t)andwewillpresentthecorrespondingSchrödingerequationinthefollowingtext.2.2.HermitianoperatorforthestockmarketInquantummecha
18、nics,physicalquantitiesthatareusedtodescribethesystemcanbewrittenasHermitianoperatorsintheHilbertspace,whichdeterminetheobservablestates.Thevaluesofphysicalquantitiesshouldbetheeigenvaluesofcorrespondingoperators.Whileinthestockmarket,eachHermitianoperatorrepresentsaneconomicquantity.Forexample,inth
19、epriceoperator(hereweapproximatethepriceasacontinuous-variable)correspondstothepositionoperatorxquantummechanics,whichhasbeenoriginallyusedintheBrownianmotionofthestockprice18.Thereforethefluctuationofthestockpricecanbeviewedasthemotionofaparticleinspace.Moreover,theenergyofthestock,whichrepresentst
20、heintensityofthepricesmovement,canbedescribedbytheHamiltonianthatplaysakeyroleintheSchrödingerequation.2.3.UncertaintyprincipleTherelationoftwovariablesthatdonotcommutewitheachothercanbedemonstratedbytheuncertaintyprinciple.Forexample,thepositionandthemomentumaretwofamiliarconjugatevariablesinq
21、uantummechanics.Theproductoftheirstandarddeviationisgreaterthanorequaltoacertainconstant.Thismeansonecannotsimultaneouslygetaccuratevaluesofbothpositionandmomentum.Themorepreciselyonevariableismeasured,thelesspreciselytheotheronecanbeknown.Asismentionedabove,thestockpricecorrespondstotheposition.Mea
22、nwhilethereshouldbeanothervariableTcorrespondingtothemomentum.Asguidanceinquantumtheory,thecorrespondenceprinciplefiguresoutthatwhenthelawswithintheframeworkofthemicro-worldextendtomacroscope,theresultsshouldbeconsistentwiththeoutcomesoftheclassicallaws.Inthemacrosystem,themomentumcanbewrittenasthem
23、asstimesthefirst-ordertimederivativeofthepositioninsomespecialcases.Asaresult,inourquantumfinancemodel,(3)dtwherewecalltheconstantm0themassofstock.Tisavariabledenotingtherateofpricechange,whichcorrespondstothetrendofthepriceinthestockmarket.Inourmodel,theuncertaintyprinciplethuscanbewrittenasT=m0d
24、983051;Th¯2,(4)C.Zhang,L.Huang/PhysicaA389(2010)576957755771whereandTarethestandarddeviationsofthepriceandthetrendrespectively,andh¯isthereducedPlanckconstantinquantummechanics.TheequalityisachievedwhenthewavefunctionofthesystemisaGaussiandistributionfunction.Mea
25、nwhile,infinance,theGaussiandistributionusuallymayapproximatelydescribetherateofreturnoftheassetinthebalancedmarket18.TakingYuan(thecurrencyunitinChina)astheunitofpriceintherestoftext,wemayestimatethestandarddeviationofthepriceas=103Yuan19.Whenthetotalvariationofthestockpriceissmall,thestan
26、dardddeviationofdinthetrend(3)canbeapproximatedastddt222ddd=.dtdtdt(5)Meanwhile,theaveragerateofstockpricechangecanbeevaluatedas102YuanpertensecondsintheChinesestockmarket.Viatheuncertaintyprinciple(4)weestimatethemagnitudeofm0isabout1028.Althoughtheunitofthismass,whichcontainsunitsofmass,l
27、engthandcurrency,isdifferentfromtherealmass,itdoesnotaffectthecalculationofthewavefunctionwhichisnon-dimensionalandwestillcallitmassinthispaper.Itshouldbeanintrinsicpropertyandrepresentstheinertiaofastock.Whenthestockhasabiggermass,itspriceismoredifficulttochange.Ingeneral,stockshavinglargermarketca
28、pitalizations,alwaysmoveslowerthanthesmallermarketcapitalizationsones.Thus,themassofthestockmaybeconsideredasaquantityrepresentingthemarketcapitalization.Theuncertaintyprinciple(4)canbeoftenseeninfinance.Forexample,atacertaintimesomeoneknowsnothingbuttheexactpriceofastock.Asaresult,hecertainlydoesno
29、tknowtherateofpricechangethenexttimeandthedirectionofthepricemovement.Inotherwords,theuncertaintyofthetrendseemstobeinfinite.Howeverintherealstockmarket,weknowmorethanthestockpriceitselfatanytime.Wecanalwaysgettheinformationabouthowmanybuyersandsellerstherearenearthecurrentprice(e.g.investorsinChina
30、areabletoseefiveortenbidandaskpricesandtheirvolumesonthescreenviastocktradingsoftware).Itisactuallyadistributionofthepricewithinacertainrangeinsteadofanexactprice.Asaresult,wecanevaluateastandarddeviationoftheprice.Thusthetrendofthestockpricemaybepartlyknownviatheuncertaintyprinciple(4).Forexample,i
31、fatraderseesthenumberofbuyersisfarmorethanthenumberofsellersnearthecurrentprice,hemaypredictthatthepricewillrisethenexttime.Infinance,thestandarddeviationoftheassetpriceisusuallyanindicatorofthefinancialrisks.Introducingtheuncertaintyprincipleofthequantumtheorymaybehelpfulinthestudyoftheriskmanageme
32、nttheory.2.4.SchrödingerequationWiththeassumptionsofthewavefunctionandtheoperatorabove,letusconsideradifferentialequationtocalculatetheevolutionofthestockpricedistributionovertime.Inthequantumtheory,itshouldbetheSchrödingerequationwhichdescribestheevolutionofthemicro-world.Correspondingtoo
33、urmodel,itcanbeexpressedas(,t),(,t)=H(6)t=H(,T,t)isthefunctionofprice,trendandtime.Whenweknowtheinitialstateoftheprice,wheretheHamiltonianHih¯bysolvingthepartialdifferentialequation(6)wecangetthepricedistributionatanytimeinthefuture.ThedifficultyhereistheconstructionoftheHamiltonianbecausethere
34、arelotsoffactorsimpactingthepriceandthetrendofthestock,suchastheeconomicenvironment,themarketinginformation,thepsychologyofinvestors,etc.Itisnoteasytoquantifythemandimportthemintoanoperator.NextwewillusethetheoriesabovetoconstructasimpleHamiltoniantosimulatethefluctuationofthestockpriceintheChinesem
35、arketunderanidealperiodicimpactofexternalfactors.3.ThestockinaninfinitehighsquarewellIntheChinesestockmarketthereisapricelimitrule,i.e.therateofreturninatradingdaycannotbemorethan±10%comparedwiththepreviousdaysclosingprice,whichisappliedtomoststocksinChina.Thisleadsustosimulatethefluctuationoft
36、hestockpricebetweenthepricelimitsinaone-dimensionalinfinitesquarewell.Weconsideraninfinitewellwithwidthd0=0×20%,where0isthepreviousdaysclosingpriceofastock.Afterthetransformationofcoordinate=0,(7)thequantumwellbecomesasymmetricinfinitesquarewellwithwidthd0,andthestockpriceistransformedintotheab
37、solutereturn.Goonandletr=,0(8)thusthevariableofcoordinateturnstobetherateofthereturn.Atthesametime,thewidthofthewellbecomesd=20%.IfweapproximatelytaketheaveragestockpriceinChinatobe10Yuan,toevaluatethemassofthestockagaininthenew5772C.Zhang,L.Huang/PhysicaA389(2010)57695775Fig.1.(a)Intheinfinitesquar
38、ewellwithwidthd=0.2,theprobabilitydensityoftherateofstockreturncanbeapproximatelydescribedbytheGaussiandistribution(dashedline).Hereweuseacosine-squarefunction(solidline)tosimulatethedistributionoftherateofreturninequilibrium.(b)WhenaperiodicfieldisputintotheHamiltonian,thebottomofthequantumwellbegi
39、nstoslopeanditchangesperiodically.coordinatesystem,thereshouldbeadivisionby102Yuanfromtheleftsideoftheuncertaintyprinciple(4).Comparedwithm0,themassdenotedbymhereshouldbeapproximatelyevaluatedas1030,inwhichthedimensionofcurrencyvanishesandthisismoreacceptableinphysics.Usually,whenthemarketstaysinthe
40、stateofequilibrium,thereturndistributioncanbedescribedapproximatelybytheGaussiandistribution18ormorepreciselybytheLévydistribution20.WhileintheChinesestockmarketwiththepricelimitrule,thedistributionmaybemorecomplicatedduetotheboundaryconditions.However,hereweonlywanttoquantitativelydescribethev
41、olatilityofthestockreturnbythequantummodel,sowechooseacosine-squarefunction,whoseshapeisclosetotheGaussiandistribution,toapproximatelysimulatethereturndistributioninequilibrium.Thereasonforsuchaselectionisthegroundstateofthesymmetricinfinitewelldiscussedaboveisaconcavecosinefunctionwithnozeroexceptf
42、ortwoextremepoints21,whichisusuallydenotedby0(r)=2dcosrd(9)withcorrespondingeigenenergyE0=h¯222md2.(10)Accordingtothepropertyofthewavefunction,thesquaremodulusofthestate(9)istheprobabilitydensityofthedistributionoftherateofthereturn.AsisshowninFig.1(a),whatisthesameastheGaussiandistributionorth
43、eLévydistributionisthatinthecenterofthewell,whichcorrespondstozeroreturn,theprobabilitydensityhasthemaximalvalueanditdecreasessymmetricallyandgraduallytowardstheleftandrightsides.Themainreasonwhythisdistributionisnotpreciseenoughisitdoesnothavefattailsandasharppeak.Thecosinedistributionfunction
44、equalstozeroatr=±d/2duetotheboundaryconditionoftheinfinitesquarewell.Judgingfromtheshape,thecosinedistributionisagoodapproximationfortheGaussiandistributionwithalargevarianceortheLévydistributionwithagreatparameter.Thereisalwaysalotofmarketinformationaffectingthestockprice.Thetotaleffectof
45、informationappearingatacertaintimeisusuallyconduciveeithertothestockpricesriseortothestockpricesdecline.Inordertodescribetheevolutionoftherateofreturnundertheinformation,weconsideranidealizedmodel,inwhichweassumetwotypesofinformationappearperiodically.Wemayuseacosinefunctioncosttosimulatethefluctuat
46、ionoftheinformation,whereistheappearancefrequencyofdifferentkindsofinformationandhereweassume=104s1.ThatmeanstheinformationfluctuatesinasinglecycleofaboutfourtradingdaysinChina,whichmaybereasonable.Thevalueofthefunctioncostchangesbetween1,1overtime,wheretheinformationisadvantageoustothepricesrisewhe
47、nthecosinefunctionislessthanzero,andadvantageoustothepricesdeclinewhenitisgreaterthanzero.Thestockhereissimilartoachargedparticlemovinginanelectromagneticfield,wherethedifferenceisthattheexternalfieldofthestockmarketisconstructedbytheinformation.Thestockpricemaybeinfluencedbysuchafield.Underthedipol
48、eapproximation,thepotentialenergyofthestockcanbesimilarlyexpressedaseFrcost,whereeisaconstantwiththesameorderofmagnitudeasanelementarycharge,andFdenotestheamplitudeoftheexternalfield.TheHamiltonianofthiscoupledsystemcanbewrittenash¯22H=+eFrcost,2mr2(11)wherethefirsttermisthekineticenergyofthest
49、ockreturn,whichrepresentssomepropertiesofthestockitself.Thesecondonecorrespondingtothepotentialenergyreflectsthecyclicalimpactthestockfeelsintheinformationfield.Inordertoobservethecharactersofthissystementirely,wemakethemagnitudedifferencebetweenthekineticenergy(i.e.groundstateenergyoftheinfinitesqu
50、arewellwithoutexternalfield)andthepotentialenergysmall,thustheestimateF=1019C.Zhang,L.Huang/PhysicaA389(2010)576957755773here.BecausethesecondtermofHamiltoniancontainstherateofreturnr,atiltappearsatthebottomoftheinfinitesquarewell,whichisshowninFig.1(b).Theslopeofthebottomfluctuatesperiodicallydueto
51、thechangeofcostovertime,whichmeansthewellisnolongersymmetric.Thisreflectstheimbalanceofthemarket,andthedistributionoftherateofreturnbecomessymmetrybreakingfromthestate(9)inequilibrium.AfterconstructingsuchanidealHamiltonian(11),weneedtogetthesolutionofthecorrespondingSchrödingerequationh¯2
52、2ih+eFrcost(r,t).¯(r,t)=t2mr2(12)However,theanalyticalsolutionforasimilarequationhasbeenstudiedbefore22.Thereforewejusthaveabriefreview.Atfirst,let(r,t)=(,t)(r,t)withvariablesubstitutionm2Inthewavefunction(13),let(13)=reFcost.(14)iEctieFrsintie2F2(2tsin2t)(r,t)=exp,hh8h¯¯¯m3(15)w
53、hereEcdenotestheenergyofthedrivensystem.AfterbothsidesofEq.(12)aredividedby(r,t),wefind(,t)satisfiesthetime-dependentSchrödingerequationh¯222m(,t)E(,t)=ih¯2l=(,t)t(16)anditssolutioncanbewrittenas(,t)=Alexp±i2mEh¯exp(ilt),(17)wheretheenergymaybeexpressedasE=Ec±lh¯.(
54、18)ThecentricenergyEcisdeterminedbytheboundaryconditionsandclosetotheenergy(10)ofthegroundstateofthestationarySchrödingerequationwithoutexternalimpact.TheenergysplitsaroundEcwiththeintegralmultipleofenergyunith¯andeverynewenergycorrespondstoapossiblestateofthesystem.FromEqs.(13),(15)and(17
55、),thewavefunctionoftherateofstockreturncanbewrittenasthesuperpositionofallthosestates(r,t)=exp×iEcth¯ieFrsinth¯ie2F2(2tsin2t)Alexp(ilt)expikl8h¯m3reFcostm2l=eFcost+()lexpiklr,m2(19)wherethewavevectoriskl=2m(Ec+lh¯)/h¯2.(20)Inthewavefunction(19),Aldenotestheamplitudefore
56、achpossiblestate,whicharesomeconstantstobedetermined.InEq.(19),weusetheFourierexpansionfortheexponentialfunctionexpikeFkleFcostm2=n=inJnkleFm2exp(int),(21)whereJn(m2)isthenthBesselfunctionandletEq.(19)satisfytheboundaryconditionoftheinfinitequantumwelld2,t=,t2d=0.(22)Accordingtophysics,thismustbesat
57、isfiedatanytime.BytheorthogonalityofBesselfunction23l=Jnl(u)Jml(u)=m,n,(23)5774C.Zhang,L.Huang/PhysicaA389(2010)57695775Fig.2.Numericalsimulationsoftheprobabilitydensityoftherateofreturnat(a)t=0(solidline),(b)t=1000s(dottedline)and(c)t=25,000s(dashedline),inwhichparametersarerespectivelye=1019,m=103
58、0,=104,F=1019andd=0.2.Att=0thedistributioncorrespondstotheinitialstateofthesystem.Theexternalfieldmakesthedistributionsimbalanceatt=1000sandt=25,000s.thesummationoverninEq.(21)canbereduced,andEq.(19)attheboundaryturnstobe(i)lAlexp(ikld/2)+()lexp(ikld/2)Jn+lkleFm2=0.(24)l=Bydefiningtwoparametersv=q=h¯Eck0eFm2(25)andexpandingthewavevectorkl=k0maybefound22Al=il1ltothesecondorderofv,thenon-normalizedapproximatesolutionofAl3q2v32Jl(q)+q(q22)v264Jl+1(q)Jl1(q)q3v264Jl+2(q)Jl2(q)9q4v22048whichmeetsq2v232Jl+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京課改版歷史八年級(jí)下冊(cè)第2課《新中國(guó)的初步鞏固》聽(tīng)課評(píng)課記錄
- 人民版道德與法治九年級(jí)上冊(cè)4.2《城鄉(xiāng)差距》聽(tīng)課評(píng)課記錄
- 招投文件合同范本(2篇)
- 生物燃料鍋爐購(gòu)買合同(2篇)
- 人教版數(shù)學(xué)七年級(jí)下冊(cè)《7-2-2用坐標(biāo)表示平移》聽(tīng)評(píng)課記錄
- 魯人版道德與法治九年級(jí)上冊(cè)9.1《公正律師法律援助》配套聽(tīng)課評(píng)課記錄
- 湘師大版道德與法治七年級(jí)上冊(cè)2.3《快樂(lè)學(xué)習(xí)》聽(tīng)課評(píng)課記錄
- 道德與法治部編版七年級(jí)上冊(cè)同步聽(tīng)課評(píng)課記錄《第8課 生命可以永恒嗎》
- 【部編版】八年級(jí)歷史上冊(cè)《鴉片戰(zhàn)爭(zhēng)》公開(kāi)課 聽(tīng)課評(píng)課記錄及教學(xué)反思
- 蘇科版數(shù)學(xué)八年級(jí)上冊(cè)《課題學(xué)習(xí) 關(guān)于勾股定理的研究》聽(tīng)評(píng)課記錄
- 財(cái)務(wù)管控的間接成本
- 藏族唐卡藝術(shù)特色分析
- 操作系統(tǒng)課程設(shè)計(jì)報(bào)告
- 護(hù)士團(tuán)隊(duì)的協(xié)作和領(lǐng)導(dǎo)力培養(yǎng)培訓(xùn)課件
- QFD模板含計(jì)算公式計(jì)分標(biāo)準(zhǔn)說(shuō)明模板
- 醫(yī)院護(hù)理培訓(xùn)課件:《早產(chǎn)兒姿勢(shì)管理與擺位》
- 人工智能在生物醫(yī)學(xué)倫理與法律中的基因編輯與生命倫理問(wèn)題研究
- 《論文的寫作技巧》課件
- 國(guó)有資產(chǎn)管理辦法-國(guó)有資產(chǎn)管理辦法條例
- 公務(wù)車輛定點(diǎn)維修車輛保養(yǎng)(附彩圖) 投標(biāo)方案
- 00015-英語(yǔ)二自學(xué)教程-unit3
評(píng)論
0/150
提交評(píng)論