




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021/8/21The net vibrationcosAxt12212221cos2AAAAA221122111coscossinsinAAAAtgReviewSuperposition of vibration2021/8/22Chapter 2 Mechanical wavesWaves: a disturbance travels away from its source.Water waves, sound waves, radio waves, X-rays WavesMechanical WavesThe disturbance is propagating through a
2、 medium.electromagnetic WavesDo not need a medium2021/8/23WavesTransverse WavesThe medium oscillates perpendicular to the direction the wave is moving. Longitudinal WavesWater waveThe medium oscillates in the same direction as the wave is movingsound wave2021/8/24Mechanical WavesThe propagation of a
3、 disturbance in a medium.The conditions all the mechanical waves require:1) Some source of disturbance2) A medium that can be disturbed3) Some physical mechanism through which particles can influence one another.2021/8/25The essence of mechanical waves:The disturbance is transferred through space, b
4、ut the matter does not.The propagation of the disturbance also means a transfer of energy.2021/8/26Waves on a String112021/8/272-1 harmonic waves The characteristic of harmonic wavesEvery medium element oscillates around the equilibriumposition in simple harmonic motion, but the wave propagatesaway
5、from the source of disturbance. The propagation of simple harmonic motion in space2021/8/282)The phase of the particle which oscillates later is smaller. mediumdisturbancev2021/8/2918y(x,t) = A cos(t kx)A = amplitude = angular frequencyk = wave number = 2/harmonic wave functionAssuming: initial phas
6、e is zero at x=0 and t=02021/8/210Generally,The transverse displacement is not zero at x=0 and t=0( , )cos()y x tAtkxPhase constantCan be determined from the initial conditions.2021/8/211Simple harmonic vibration function:( )cosAy ttThe vibration y as a function of time t.0121 2 )(st)(cmxs12021/8/21
7、2The harmonic wave function:The wave function y(x, t) represents the y coordinate of any point P located at position x at any time t.Two variables x and t.If t is fixed, the wave function y as a function of x, calledwaveform, defines a curve representing the actual geometric shape of the pulse at th
8、at time.( , )cos()y x tAtkx2021/8/213Amplitude and WavelengthWavelengthWavelength : The distance between identical points on the wave.Amplitude AAmplitude A: The maximum displacement of a point on the wave.A192021/8/214Period and VelocitylPeriod T : The time for a point on the wave to undergo one co
9、mplete oscillation.Speed u: The wave moves one wavelength in one period, so its speed is u = / T.Tu21Tu2021/8/215Wave Properties.The speed of a wave is a constant that depends only on the medium, not on amplitude, wavelength or period (similar to SHM) uTT = 2 / and T are related ! = u T or = 2 u / o
10、r u / f2021/8/216Example 2-1-1xypuOxSuppose the harmonic vibration function of origin at t )cos()(00tAtyFind: the harmonic wave function of point P at tSolution: the time for the vibration to arrive point P is:uxt 2021/8/217xypuOxThe vibration at point P at t is identical with that of point O at t-t
11、)(cos),(),(0 uxtAttoytxyThen we have the wave function of point P:2021/8/218Example 1-1-2xyp uOxSuppose the harmonic vibration function of origin at t )cos()(00tAtyFind: the harmonic wave function of point P at t2021/8/219The vibration at point P at t is identical with that of point O at t+t)(cos)(c
12、os),(),(00 uxtAuxtAttoytxy2021/8/220Therefore, the harmonic wave function can be written as:)(cos) ,(0 uxtAtxyOr:)(2cos) ,(0 xTtAtxy)(2cos) ,(0 uxtAtxy)(2cos) ,(0 xutAtxyIf the wave travels left, use x substitute x.2021/8/221uT2T = uT2 u2021/8/222The parameters A, u of a certain planar cosine wave a
13、re known. Calculating t=0 from the moment of the following figure, 1)write the wave function taking O and P as the origin respectively. 2) Find the magnitude and direction of the speed at x1= / 8 and x2= 3/ 8 when t=0.yxx Pouy 8 83 Example 2-1-32021/8/223yxx Pouy 8 83 Solution: 1) taking O as the or
14、iginThe vibration function of O is:)cos(), 0(0 tAtyWhen t=00cos)0, 0(0 Aythen20 The velocity of x=0 at t=0:0sin)0, 0(0 Av?2021/8/2240121 2 )(st)(cmxs1The simple harmonic vibration curve:The velocity at a certain timeis the slope of the tangent line of that point.2021/8/225The harmonic wave curve (di
15、splacement as a function of x):uyxot=t1t=t2, t2t1If the slope of a certain point of the curve y(x) 0, the velocity at this point 0 (the wave travels right wards)2021/8/226yxx Pouy 8 83 Solution: 1) taking O as the originThe vibration function of O is:)cos(), 0(0 tAtyWhen t=00cos)0, 0(0 Aythen20 The
16、velocity of x=0 at t=0:0sin)0, 0(0 Avthus022021/8/227Therefore, the vibration function of O is:)2cos(), 0( tAtyThe wave function of x taking O as origin is:2)(cos), 0(),( uxtAttytxy2021/8/2281) taking P as the originyxx Pouy 8 83 The vibration function of P is:) cos(), 0( tAtyWhen t=0cos)0, 0( Ay th
17、en Anyone is Ok, we choose )cos(), 0( tAtyThe wave function of x taking P as origin is:)(cos),( uxtAtxy2021/8/229The wave function of x taking O as origin is:( , )(0,)cos ()2xy x tyttAtuThe wave function of x taking P as origin is:( , )cos ()xy x tAtuWe must identify the origin point clearly!The pha
18、se constants are different if we take various original points.2021/8/2302) Find the magnitude and direction of the speed at x1= / 8 and x2= 3/ 8 when t=0.yxou8 83 The velocity at x point:( , )cos ()2xy x tAtu( , )sin ()2y x txvAttu 2sin2Atx Because the vibration is:2021/8/231The velocity at x point
19、at t moment:2( , )sin2v x tAtx Take x=/8, t=0 into the above equation: Av22)8, 0( yxx Pouy 8 83 Along the negative y axisTake x=3/8, t=0 into the above equation: Av22)38, 0( Along the positive y axis2021/8/2322-2 wave speed / phase speed uThe speed of a wave is a constant that depends only on the me
20、dium.uT and T are related !Note: the speed of the wave u is different from the vibration velocity of a certain medium element v.yvt2021/8/233The speed of a wave is a constant that depends only on the medium.A) Wave propagating in liquid, gas/ fluid Bu B : bulk elastic modulus : the density of the me
21、dium2021/8/234B) Wave propagating in solid1) Transverse wave Gu G : shear elastic modulus2) longitudinal wave Yu Y : Young modulus2021/8/2352-3 energy of harmonic wavesMechanical wave:The disturbance is propagating through a medium.disturbanceVibration statephaseenergy2021/8/236Energy of traveling h
22、armonic wavesThe wave function:)(cos0 uxtAyxyOABx y The waveform (at t=t1):Segment AB in the mediumThe mass of AB:mxthe mass density of the medium2021/8/237The kinetic energy of AB:221mvEk xyOABx 2)( 21tyx )(sin210222 uxtxA2021/8/238The potential energy of AB:l T TyOuy x x)(xlTEp T: tension22)()(yxl
23、 2/12)(1 xyx )(2112 xyx2021/8/239)(212xyxTEp 2)(21xyxT 2)(21xyxT )(sin2102222 uxtuxAT)(sin210222 uxtxA Tu 2021/8/240)(sin210222uxtxAEEpkThe magnitude and phase of kinetic energy and potentialenergy are identical at any time.2021/8/241Note: the energy difference between wave and vibration!xyabwaveformmaxpEMaximum deformationMaximum velocitymaxkE2021/8/242The mechanical
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)借款擔(dān)保抵押合同范本
- 入股經(jīng)營(yíng)合作合同范本
- 產(chǎn)權(quán)車位租賃合同范本
- 辦公空間租賃合同范本
- 合同范本具有
- 衛(wèi)輝購(gòu)房合同范本
- 務(wù)工合同范本詳細(xì)
- 半成品加工合同范本
- 美發(fā)用品行業(yè)分析研究報(bào)告
- 印度買房合同范本
- (新版)廣電全媒體運(yùn)營(yíng)師資格認(rèn)證考試復(fù)習(xí)題庫(kù)(含答案)
- 班組建設(shè)工作體系課件
- 第章交通調(diào)查與數(shù)據(jù)分析課件
- 中醫(yī)院情志養(yǎng)生共64張課件
- 慢性心功能不全護(hù)理查房
- 秘書理論與實(shí)務(wù)教案
- 社區(qū)矯正人員工作手冊(cè)
- 淺圓倉(cāng)滑模及倉(cāng)頂板施工方案
- 應(yīng)用文第一章緒論2016春
- 統(tǒng)編版必修上冊(cè)第五《鄉(xiāng)土中國(guó)》導(dǎo)讀優(yōu)質(zhì)課件PPT
- 市場(chǎng)營(yíng)銷課程標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論