版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 二、幾個(gè)初等函數(shù)的麥克勞林公式二、幾個(gè)初等函數(shù)的麥克勞林公式 第三節(jié)一、泰勒公式的建立一、泰勒公式的建立三、泰勒公式的應(yīng)用三、泰勒公式的應(yīng)用 應(yīng)用目的用多項(xiàng)式近似表示函數(shù).理論分析近似計(jì)算泰勒公式 第三三章 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 特點(diǎn):)(01xp)(0 xf)(0 xf 一、泰勒公式的建立一、泰勒公式的建立)(xf)()(000 xxxfxf)(1xp以直代曲以直代曲0 x)(1xp)(01xp在微分應(yīng)用中已知近似公式 :需要解決的問(wèn)題如何提高精度 ?如何估計(jì)誤差 ?xx 的一次多項(xiàng)式xy)(xfy O目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 1. 求求 n 次近似
2、多項(xiàng)式次近似多項(xiàng)式要求要求:, )(xpn)(0!212xpan , )(0 xf ,)(0)(!1xpannnn)(0)(xfn故)(xpn)(0 xf)(00 xxxf!21!1nnnxxxf)(00)(!1n200)(xxxf !21令)(xpn則)(xpn )(xpnnan!)()(xpnn)(00 xpan, )(0 xf, )()(00 xfxpn)(01xpan, )(0 xf 1a)(202xxa10)(nnxxan2!2 a20)() 1(nnxxann, )()(00 xfxpn)()(,0)(0)(xfxpnnn0annxxaxxaxxa)()()(020201目錄 上頁(yè)
3、 下頁(yè) 返回 結(jié)束 )0(之間與在nx )( )(10nnxxxR )(2) 1( )(0)(xnRnnnn2. 余項(xiàng)估計(jì)余項(xiàng)估計(jì))()()(xpxfxRnn令(稱為余項(xiàng)) ,)(0 xRn)(0 xRn0)(0)(xRnn10)()(nnxxxRnnxnR)(1()(011 )(1( )(011nnxnR1022)() 1()( nnxnnR! ) 1()()1(nRnn則有)(0 xRn0)(0 xRn0)(0)(xRnn0 x)01(之間與在xx)102(之間與在x目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 )()()(xpxfxRnn10)()(nnxxxR! ) 1()()1(nRnn)0(之間與
4、在xx,0)()1(xpnn10)1()(! ) 1()()(nnnxxnfxR)()()1()1(xfxRnnn時(shí)的某鄰域內(nèi)當(dāng)在Mxfxn)() 1(0)0(之間與在xx10! ) 1()(nnxxnMxR)()()(00 xxxxoxRnn目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 公式 稱為 的 n 階泰勒公式階泰勒公式 .)(xf公式 稱為n 階泰勒公式的拉格朗日余項(xiàng)拉格朗日余項(xiàng) .泰勒泰勒(Taylor)中值定理中值定理 :內(nèi)具有的某開(kāi)區(qū)間在包含若),()(0baxxf1n直到階的導(dǎo)數(shù) ,),(bax時(shí), 有)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(
5、00)()(xRn其中10)1()(! ) 1()()(nnnxxnfxR則當(dāng))0(之間與在xx泰勒 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 公式 稱為n 階泰勒公式的佩亞諾佩亞諾(Peano) 余項(xiàng)余項(xiàng) .在不需要余項(xiàng)的精確表達(dá)式時(shí) , 泰勒公式可寫為)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(0nxxo)()(0nnxxoxR注意到* 可以證明: 階的導(dǎo)數(shù)有直到在點(diǎn)nxxf0)( 式成立目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 特例特例:(1) 當(dāng) n = 0 時(shí), 泰勒公式變?yōu)?(xf)(0 xf)(0 xxf(2) 當(dāng) n = 1 時(shí), 泰勒公式變?yōu)?/p>
6、給出拉格朗日中值定理)(xf)(0 xf)(00 xxxf20)(!2)(xxf 可見(jiàn))(xf)(0 xf)(00 xxxf201)(!2)()(xxfxR 誤差)(xf)(0 xf)(00 xxxf10)1()(! ) 1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)(fd)0(之間與在xx)0(之間與在xx)0(之間與在xx)0(之間與在xx目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 稱為麥克勞林麥克勞林( Maclaurin )公式公式 ., 00 x則有)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()(在泰勒公式中
7、若取)(xf)(0 xf)(00 xxxf10)1()(! ) 1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)()0(之間與在xx)(xf)0(fxf)0( ,)()1(Mxfn則有誤差估計(jì)式1! ) 1()(nnxnMxR2!2)0(xf nnxnf!)0()(若在公式成立的區(qū)間上麥克勞林 由此得近似公式, ) 10(x記目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 二、幾個(gè)初等函數(shù)的麥克勞林公式二、幾個(gè)初等函數(shù)的麥克勞林公式xxfe)() 1 (,e)()(xkxf),2, 1(1)0()(kfkxe1x!33x!nxn)(xRn!22x其中)(xRn!) 1( n) 10
8、(1nxxe)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()(麥克勞林公式麥克勞林公式 ) 10(目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 )sin(212mx)cos() 1(xm)sin( xxxfsin)()2()()(xfkxsinx!33x!55x! ) 12(12mxm)(2xRm其中)(2xRm2k2sin)0()(kfkmk2,012 mk,) 1(1m),2, 1(m1) 1(m) 10(12mx!) 12(m)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(麥克勞林
9、公式麥克勞林公式 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 麥克勞林公式麥克勞林公式 ! )2(2mxmxxfcos)()3(類似可得xcos1!22x!44x)(12xRm其中)(12xRm! )22(m)cos() 1(1xm) 10(m) 1(22mx)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 ) 1(,)1 ()()4(xxxf)()(xfk)1 (x1x2xnx)(xRn其中)(xRn11)1 (! ) 1()() 1(nnxxnn) 10(kxk)1)(1() 1() 1() 1()0()(k
10、fk),2, 1(k!2 ) 1(! n) 1() 1(n)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(麥克勞林公式麥克勞林公式 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 ) 1()1ln()()5(xxxf已知)1ln(xx22x33xnxn)(xRn其中)(xRn11)1 (1) 1(nnnxxn) 10(1) 1(n因此可得)()(xfkkkxk)1 (! ) 1() 1(1),2, 1(k)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(麥克勞林公式麥克勞林公式
11、目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 三、泰勒公式的應(yīng)用三、泰勒公式的應(yīng)用1. 在近似計(jì)算中的應(yīng)用在近似計(jì)算中的應(yīng)用 誤差1! ) 1()(nnxnMxRM 為)() 1(xfn在包含 0 , x 的某區(qū)間上的上界.需解問(wèn)題的類型:1) 已知 x 和誤差限 , 要求確定項(xiàng)數(shù) n ;2) 已知項(xiàng)數(shù) n 和 x , 計(jì)算近似值并估計(jì)誤差;3) 已知項(xiàng)數(shù) n 和誤差限 , 確定公式中 x 的適用范圍.)(xf)0(fxf)0( 2!2)0(xf nnxnf!)0()(目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 例例1. 計(jì)算無(wú)理數(shù) e 的近似值 , 使誤差不超過(guò).106解解: 已知xe! ) 1( nxe1nx令 x =
12、 1 , 得e) 10(!) 1(e!1!2111nn) 10(由于,3ee0欲使) 1 (nR!) 1(3n610由計(jì)算可知當(dāng) n = 9 時(shí)上式成立 ,因此e!91!21112.718282xe1x!33x!nxn!22x的麥克勞林公式為目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 說(shuō)明說(shuō)明: 注意舍入誤差對(duì)計(jì)算結(jié)果的影響.本例若每項(xiàng)四舍五入到小數(shù)點(diǎn)后 6 位,則 各項(xiàng)舍入誤差之和不超過(guò),105 . 076總誤差限為6105 . 076106105這時(shí)得到的近似值不能保證不能保證誤差不超過(guò).106因此計(jì)算時(shí)中間結(jié)果應(yīng)比精度要求多取一位 .e!91!2111目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 例例2. 用近似公式
13、!21cos2xx計(jì)算 cos x 的近似值,使其精確到 0.005 , 試確定 x 的適用范圍.解解: 近似公式的誤差)cos(!4)(43xxxR244x令005. 0244x解得588. 0 x即當(dāng)588. 0 x時(shí), 由給定的近似公式計(jì)算的結(jié)果能準(zhǔn)確到 0.005 .目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 2. 利用泰勒公式求極限利用泰勒公式求極限例例3. 求.43443lim20 xxxx解解:由于x431243 x21)1 (243x 2)(14321x!21) 1(2121243)( x)(2xo用洛必達(dá)法則不方便 !2x用泰勒公式將分子展到項(xiàng),11)1 (! ) 1()() 1(nnxx
14、nnnx! n) 1() 1(n)1 (x1x2x!2 ) 1() 10(x3421)1 (243x220 limxx 原式)(2216921xox 329x43)(2216941xox 2x43)(2216941xox 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 11)1 (! ) 1()() 1(nnxxnnnx! n) 1() 1(n)1 (x1x2x!2 ) 1() 10(3. 利用泰勒公式證明不等式利用泰勒公式證明不等式例例4. 證明).0(82112xxxx證證:21)1 (1xx21x2) 121(21!21x325)1)(221)(121(21!31xx) 10(3225)1 (161821
15、xxxx)0(82112xxxx+目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 內(nèi)容小結(jié)內(nèi)容小結(jié)1. 泰勒公式泰勒公式其中余項(xiàng))(0nxxo當(dāng)00 x時(shí)為麥克勞林公式麥克勞林公式 .)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn10)1()(! ) 1()()(nnnxxnfxR)0(之間與在xx目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 2. 常用函數(shù)的麥克勞林公式常用函數(shù)的麥克勞林公式 ( P142 P144 ),ex, )1ln(x,sin x,cosx)1 (x3. 泰勒公式的應(yīng)用泰勒公式的應(yīng)用(1) 近似計(jì)算(3) 其他應(yīng)用求極限 , 證明不等式 等.
16、(2) 利用多項(xiàng)式逼近函數(shù) xsin例如例如 泰勒多項(xiàng)式逼近泰勒多項(xiàng)式逼近12! ) 12() 1(9!917!715!513!311sinnnxxxxxxxn)(2nxo!33xxy!5!353xxxy!7!5!3753xxxxyxysinxy xsin6422464224xyO泰勒多項(xiàng)式逼近泰勒多項(xiàng)式逼近12! ) 12() 1(9!917!715!513!311sinnnxxxxxxxn)(2nxoxsinxysin!9!7!5!39753xxxxxy!11!9!7!5!3119753xxxxxxy642246Ox4224y目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 思考與練習(xí)思考與練習(xí) 計(jì)算.3co
17、s2elim402xxxx)(!211e4422xoxxx)(!4!21cos542xoxxx)()!412!21(3cos2e442xoxxx127)(lim4441270 xxoxx解解:原式第四節(jié) 作業(yè)作業(yè) P145 1 ; 4 ; 5 ; 7 ; 8;*10 (1), (2)泰勒泰勒 (1685 1731)英國(guó)數(shù)學(xué)家, 他早期是牛頓學(xué)派最優(yōu)秀的代表人物之一 , 重要著作有: 正的和反的增量方法(1715) 線性透視論(1719) 他在1712 年就得到了現(xiàn)代形式的泰勒公式 .他是有限差分理論的奠基人 .麥克勞林麥克勞林 (1698 1746)英國(guó)數(shù)學(xué)家, 著作有:流數(shù)論(1742)有機(jī)
18、幾何學(xué)(1720)代數(shù)論(1742)在第一本著作中給出了后人以他的名字命名的麥克勞林級(jí)數(shù)麥克勞林級(jí)數(shù) .目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 , 1 ,0)(上具有三階連續(xù)導(dǎo)數(shù)在設(shè)函數(shù)xf, 0)(,2) 1 (,1)0(21fff.24)(, f使一點(diǎn))(xf)(21之間與在其中x, 1,0 x證證: 由題設(shè)對(duì)備用題備用題 1.321)(!31 xf)(21f221)( x)(! 2121f )(2121xf有)(21f221)( x)(!2121f 321)(!31 xf內(nèi)至少存在證明) 1,0(且得分別令, 1,0 x目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 )(21之間與在其中x)()(21fxf221)( x)(!2121f 321)(!31 xf)(241f 24)( f), 0(211)(21f)1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 呼吸系統(tǒng)慢病管理新進(jìn)展
- 智能安全設(shè)備的人性化設(shè)計(jì)
- 機(jī)械安全事故案例
- 第三章 運(yùn)動(dòng)和力的關(guān)系-教材實(shí)驗(yàn)4 探究加速度與力、質(zhì)量的關(guān)系 2025年高考物理基礎(chǔ)專項(xiàng)復(fù)習(xí)
- 3.3.2鹽類水解的影響因素及常數(shù) 課件高二上學(xué)期化學(xué)人教版(2019)選擇性必修1
- 智慧園區(qū)產(chǎn)品方案
- 《Excel數(shù)據(jù)獲取與處理實(shí)戰(zhàn)》 課件 陳青 第1、2章 Excel 2016概述、外部數(shù)據(jù)的獲取
- 輿情應(yīng)急演練桌面推演
- 保暖小幫手教案及反思
- 好餓的毛毛蟲說(shuō)課稿
- 湖北省武漢市漢陽(yáng)區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期中語(yǔ)文卷
- 2024年廣東省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 浙江省杭州市2025屆高三上學(xué)期一模英語(yǔ)試題 含答案
- 2025屆高三化學(xué)一輪復(fù)習(xí) 原電池 化學(xué)電源(第一課時(shí))課件
- 黑龍江省 哈爾濱市第四十七中學(xué)校2024-2025學(xué)年七年級(jí)上學(xué)期期中考試語(yǔ)文試題
- 泵站機(jī)組預(yù)調(diào)試運(yùn)行方案
- 初中英語(yǔ)閱讀教學(xué)中滲透德育的路徑例析
- 2024年軟裝公司合同模板
- 2024-2030年智慧環(huán)保行業(yè)市場(chǎng)發(fā)展分析及競(jìng)爭(zhēng)形勢(shì)與投資發(fā)展前景研究報(bào)告
- 部編版語(yǔ)文四年級(jí)上冊(cè)習(xí)作《記一次游戲》精美課件
- 期中(1-4單元)(試題)-2024-2025學(xué)年六年級(jí)數(shù)學(xué)上冊(cè)西師大版
評(píng)論
0/150
提交評(píng)論