2021-2022學(xué)年云南省昆明市云南高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第1頁
2021-2022學(xué)年云南省昆明市云南高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第2頁
2021-2022學(xué)年云南省昆明市云南高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第3頁
2021-2022學(xué)年云南省昆明市云南高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第4頁
2021-2022學(xué)年云南省昆明市云南高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目

2、要求的。1已知函數(shù)的值域?yàn)?,函?shù),則的圖象的對稱中心為( )ABCD2已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長為4,、分別為側(cè)棱,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為( )ABCD3已知函數(shù),的零點(diǎn)分別為,則( )ABCD4若P是的充分不必要條件,則p是q的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件5德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于的級(jí)數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家天文學(xué)家明安圖(1692年-1765年)為提高我國的

3、數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級(jí)數(shù)公式,著有割圓密率捷法一書,為我國用級(jí)數(shù)計(jì)算開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于的級(jí)數(shù)展開式”計(jì)算的近似值(其中P表示的近似值),若輸入,則輸出的結(jié)果是( )ABCD6對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績在區(qū)間110,120內(nèi);乙同學(xué)的數(shù)學(xué)成績與測試次號(hào)具有比

4、較明顯的線性相關(guān)性,且為正相關(guān);乙同學(xué)連續(xù)九次測驗(yàn)成績每一次均有明顯進(jìn)步其中正確的個(gè)數(shù)為()A4B3C2D17若直線l不平行于平面,且l,則( )A內(nèi)所有直線與l異面B內(nèi)只存在有限條直線與l共面C內(nèi)存在唯一的直線與l平行D內(nèi)存在無數(shù)條直線與l相交8某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為( )ABCD9復(fù)數(shù),是虛數(shù)單位,則下列結(jié)論正確的是AB的共軛復(fù)數(shù)為C的實(shí)部與虛部之和為1D在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于第一象限10執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是( )ABCD11已知拋物線:()的焦點(diǎn)為,為該拋物線上一點(diǎn),以為圓心的圓與的準(zhǔn)線相切于點(diǎn),則拋物線

5、方程為( )ABCD12已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),則當(dāng)時(shí),的最大值是( )A8B9C10D11二、填空題:本題共4小題,每小題5分,共20分。13等差數(shù)列(公差不為0),其中,成等比數(shù)列,則這個(gè)等比數(shù)列的公比為_.14正三棱柱的底面邊長為2,側(cè)棱長為,為中點(diǎn),則三棱錐的體積為_15已知等差數(shù)列的前n項(xiàng)和為,則_16如圖是一個(gè)算法偽代碼,則輸出的的值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn) (1)求證:平面; (2)求

6、二面角的正切值18(12分)在如圖所示的四棱錐中,四邊形是等腰梯形,平面,. (1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.19(12分)在平面直角坐標(biāo)系中,為直線上動(dòng)點(diǎn),過點(diǎn)作拋物線:的兩條切線,切點(diǎn)分別為,為的中點(diǎn).(1)證明:軸;(2)直線是否恒過定點(diǎn)?若是,求出這個(gè)定點(diǎn)的坐標(biāo);若不是,請說明理由.20(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,若,且.求數(shù)列的通項(xiàng)公式;求證:.21(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.(3)證明:當(dāng)時(shí),.22(10分)移動(dòng)支付(支付寶及

7、微信支付)已經(jīng)漸漸成為人們購物消費(fèi)的一種支付方式,為調(diào)查市民使用移動(dòng)支付的年齡結(jié)構(gòu),隨機(jī)對100位市民做問卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補(bǔ)充完整,并請說明在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡是否有關(guān)?(2)在使用移動(dòng)支付的人群中采用分層抽樣的方式抽取10人做進(jìn)一步的問卷調(diào)查,從這10人隨機(jī)中選出3人頒發(fā)參與獎(jiǎng)勵(lì),設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】由值域?yàn)榇_定的值,得,利用對稱中心列方程求解即可【詳解】因

8、為,又依題意知的值域?yàn)?,所?得,所以,令,得,則的圖象的對稱中心為.故選:B【點(diǎn)睛】本題考查三角函數(shù) 的圖像及性質(zhì),考查函數(shù)的對稱中心,重點(diǎn)考查值域的求解,易錯(cuò)點(diǎn)是對稱中心縱坐標(biāo)錯(cuò)寫為02D【解析】如圖,平面截球所得截面的圖形為圓面,計(jì)算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本

9、題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.3C【解析】轉(zhuǎn)化函數(shù),的零點(diǎn)為與,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),的零點(diǎn),即為與,的交點(diǎn),作出與,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.4B【解析】試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B考點(diǎn):邏輯命題5B【解析】執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.

10、【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.6C【解析】利用圖形,判斷折線圖平均分以及線性相關(guān)性,成績的比較,說明正誤即可【詳解】甲同學(xué)的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,錯(cuò)誤;根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績在區(qū)間110,120內(nèi),正確;乙同學(xué)的數(shù)學(xué)成績與測試次號(hào)具有比較

11、明顯的線性相關(guān)性,且為正相關(guān),正確;乙同學(xué)在這連續(xù)九次測驗(yàn)中第四次、第七次成績較上一次成績有退步,故不正確故選:C【點(diǎn)睛】本題考查折線圖的應(yīng)用,線性相關(guān)以及平均分的求解,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于基礎(chǔ)題7D【解析】通過條件判斷直線l與平面相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面,且l可知直線l與平面相交,于是ABC錯(cuò)誤,故選D.【點(diǎn)睛】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.8C【解析】根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,過S作,連接BD ,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)

12、三棱錐,且平面SAC 平面ABC,過S作,連接BD,則 ,所以 , ,該幾何體中的最長棱長為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.9D【解析】利用復(fù)數(shù)的四則運(yùn)算,求得,在根據(jù)復(fù)數(shù)的模,復(fù)數(shù)與共軛復(fù)數(shù)的概念等即可得到結(jié)論【詳解】由題意,則,的共軛復(fù)數(shù)為,復(fù)數(shù)的實(shí)部與虛部之和為,在復(fù)平面內(nèi)對應(yīng)點(diǎn)位于第一象限,故選D【點(diǎn)睛】復(fù)數(shù)代數(shù)形式的加減乘除運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化,其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)的實(shí)部為、虛部為、

13、模為、對應(yīng)點(diǎn)為、共軛為10B【解析】根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.11C【解析】根據(jù)拋物線方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的

14、準(zhǔn)線相切于點(diǎn),根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.12B【解析】根據(jù)題意計(jì)算,解不等式得到答案.【詳解】是以1為首項(xiàng),2為公差的等差數(shù)列,.是以1為首項(xiàng),2為公比的等比數(shù)列,.,解得.則當(dāng)時(shí),的最大值是9.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列,f分組求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。134【解析】根據(jù)等差數(shù)列關(guān)系,用首項(xiàng)和公差表示出,解出首項(xiàng)和公差的關(guān)系,

15、即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得: ,則整理得,所以故答案為:4【點(diǎn)睛】此題考查等差數(shù)列基本量的計(jì)算,涉及等比中項(xiàng),考查基本計(jì)算能力.14【解析】試題分析:因?yàn)檎庵牡酌孢呴L為,側(cè)棱長為為中點(diǎn),所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為考點(diǎn):幾何體的體積的計(jì)算15【解析】利用求出公差,結(jié)合等差數(shù)列的通項(xiàng)公式可求.【詳解】設(shè)公差為,因?yàn)?,所以,?所以.故答案為:【點(diǎn)睛】本題主要考查等差數(shù)列通項(xiàng)公式的求解,利用等差數(shù)列的基本量是求解這類問題的通性通法,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).165【解析】執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖

16、得,結(jié)束循環(huán),輸出.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運(yùn)算能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1)見證明;(2) 【解析】(1)取PD中點(diǎn)G,可證EFGA是平行四邊形,從而, 得證線面平行;(2)取AD中點(diǎn)O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得【詳解】(1)證明:取PD中點(diǎn)G,連結(jié)為的中位線,且, 又且,且,EFGA是平行四邊形,則, 又面,面, 面; (2)解:取AD中點(diǎn)O,連結(jié)PO, 面面,為正三角形,面,且, 連交于,可得,則,即 連,又,可得平面,則, 即是二面角的平面角, 在中,即二面角的正切值

17、為【點(diǎn)睛】本題考查線面平行證明,考查求二面角求二面角的步驟是一作二證三計(jì)算即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計(jì)算18(1)證明見解析;(2).【解析】(1)由已知可得,結(jié)合,由直線與平面垂直的判定可得平面;(2)由(1)知,則,兩兩互相垂直,以為坐標(biāo)原點(diǎn),分別以,所在直線為,軸建立空間直角坐標(biāo)系,設(shè),0,由二面角的余弦值為求解,再由空間向量求解直線與平面所成角的正弦值【詳解】(1)證明:因?yàn)樗倪呅问堑妊菪?,所?又,所以,因此,又,且,平面,所以平面.(2)取的中點(diǎn),連接,由于,因此,又平面,平面,所以.由于,平面,所以平面,故,所以為二面角的平面角.

18、在等腰三角形中,由于,因此,又,因?yàn)?,所以,所以以為軸、為軸、為軸建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為所以,即,令,則,則平面的法向量,設(shè)直線與平面所成角為,則 【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題19(1)見解析(2)直線過定點(diǎn).【解析】(1)設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,設(shè)出點(diǎn)坐標(biāo)并代入切線的方程,同理將點(diǎn)坐標(biāo)代入切線的方程,利用韋達(dá)定理求得線段中點(diǎn)的橫坐標(biāo),由此判斷出軸.(2)求得點(diǎn)的縱坐標(biāo),由此求得點(diǎn)坐標(biāo),求得直線的斜率,由此求得直線的方程,化簡后可得直線過定點(diǎn).【詳解】(1)設(shè)切點(diǎn),切線的斜率為,切線

19、:,設(shè),則有,化簡得,同理可的.,是方程的兩根,軸.(2),.,直線:,即,直線過定點(diǎn).【點(diǎn)睛】本小題主要考查直線和拋物線的位置關(guān)系,考查直線過定點(diǎn)問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20(1);(2);詳見解析.【解析】(1)依題意可表示,相減得,由等比數(shù)列通項(xiàng)公式轉(zhuǎn)化為首項(xiàng)與公比,解得答案,并由其都是正項(xiàng)數(shù)列舍根; (2)由題意可表示,兩式相減得,由其都是正項(xiàng)并整理可得遞推關(guān)系,由等差數(shù)列的通項(xiàng)公式即可得答案;由已知關(guān)系,表示并相減即可表示遞推關(guān)系,顯然當(dāng)時(shí),成立,當(dāng),時(shí),表示,由分組求和與正項(xiàng)數(shù)列性質(zhì)放縮不等式得證.【詳解】解:(1)依題意可得,兩式相減,得,所以,因?yàn)椋?/p>

20、,且,解得.(2)因?yàn)?,所以,兩式相減,得,即.因?yàn)?,所以,?而當(dāng)時(shí),可得,故,所以對任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項(xiàng)為1,所以數(shù)列的通項(xiàng)公式為.因?yàn)?,所以,兩式相減,得,即,所以對任意的正整數(shù),都有.令,而當(dāng)時(shí),顯然成立,所以當(dāng),時(shí),所以,即,所以,得證.【點(diǎn)睛】本題考查由前n項(xiàng)和關(guān)系求等比數(shù)列公比,求等差數(shù)列通項(xiàng)公式,還考查了由分組求和表示數(shù)列和并由正項(xiàng)數(shù)列放縮證明不等式,屬于難題.21(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】(1)求出的定義域,導(dǎo)函數(shù),對參數(shù)、分類討論得到答案.(2)設(shè)函數(shù),求導(dǎo)說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論