




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知集合A=y|y=|x|1,xR,B=x|x2,則下列結(jié)論正確的是( )A3A B3B CAB=B DAB=B2已知復(fù)數(shù)滿足,則的最大值為( )ABCD63我國古代數(shù)學(xué)巨著九章算術(shù)中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是( )A2B3C4D14已知函數(shù),若關(guān)于的方程
3、有且只有一個實數(shù)根,則實數(shù)的取值范圍是( )ABCD5如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是( )ABCD6某幾何體的三視圖如圖所示,則該幾何體的體積為()ABCD7已知是虛數(shù)單位,則復(fù)數(shù)( )ABC2D8已知P是雙曲線漸近線上一點,是雙曲線的左、右焦點,記,PO,的斜率為,k,若,-2k,成等差數(shù)列,則此雙曲線的離心率為( )ABCD9如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則( )AB
4、CD10生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )ABCD11函數(shù)的圖象大致為( )ABCD12已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在中,內(nèi)角所對的邊分別為,若 ,的面積為,則_ ,_14已知數(shù)列的前項和為,且成等差數(shù)列,數(shù)列
5、的前項和為,則滿足的最小正整數(shù)的值為_.15用數(shù)字、組成無重復(fù)數(shù)字的位自然數(shù),其中相鄰兩個數(shù)字奇偶性不同的有_個.16函數(shù)的圖象在處的切線與直線互相垂直,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在多面體中,四邊形是菱形,平面,是的中點.()求證:平面平面;()求直線與平面所成的角的正弦值.18(12分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標(biāo)原點作直線交曲線于點(異于),交曲線于點,求的最小值.19(12分)已知函數(shù),曲線在點處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)
6、設(shè),求證:.20(12分)已知數(shù)列滿足,且,成等比數(shù)列(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)記數(shù)列的前n項和為,求數(shù)列的前n項和21(12分)設(shè)數(shù)陣,其中、設(shè),其中,且定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、)表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、 ,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過22(10分)在平面直角坐標(biāo)系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(
7、1)在以為極點,軸非負(fù)半軸為極軸的極坐標(biāo)系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】試題分析:集合 考點:集合間的關(guān)系2B【解析】設(shè),利用復(fù)數(shù)幾何意義計算.【詳解】設(shè),由已知,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復(fù)數(shù)模的最大值,其實本題可以利用不等式來解決.3B【解析】將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,求的值因
8、為,解得,解得故選B【點睛】本題考查等比數(shù)列的實際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.4B【解析】利用換元法設(shè),則等價為有且只有一個實數(shù)根,分 三種情況進(jìn)行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè) ,則有且只有一個實數(shù)根.當(dāng) 時,當(dāng) 時, ,由即,解得,結(jié)合圖象可知,此時當(dāng)時,得 ,則 是唯一解,滿足題意;當(dāng)時,此時當(dāng)時,此時函數(shù)有無數(shù)個零點,不符合題意;當(dāng) 時,當(dāng) 時,此時 最小值為 ,結(jié)合圖象可知,要使得關(guān)于的方程有且只有一個實數(shù)根,此時 .綜上所述: 或.故選:A.【點睛】本題考查了函數(shù)方程根的個數(shù)的應(yīng)用.利用換元法,數(shù)形結(jié)合是解決本題的關(guān)鍵
9、.5C【解析】作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.6A【解析】利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:故選:【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵7A【解析】根據(jù)復(fù)數(shù)的基本運算求解即可.
10、【詳解】.故選:A【點睛】本題主要考查了復(fù)數(shù)的基本運算,屬于基礎(chǔ)題.8B【解析】求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運用直線的斜率公式可得,再由等差數(shù)列中項性質(zhì)和離心率公式,計算可得所求值【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),則,由,成等差數(shù)列,可得,化為,即,可得,故選:【點睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學(xué)生對這些知識的理解掌握水平9D【解析】由半圓面積之比,可求出兩個直角邊 的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求
11、出.【詳解】解:由題意知 ,以 為直徑的半圓面積,以 為直徑的半圓面積,則,即.由 ,得 ,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.10C【解析】分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有 當(dāng)“數(shù)”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種
12、,故滿足條件的事件的概率為: 故答案為:C.【點睛】解排列組合問題要遵循兩個原則:按元素(或位置)的性質(zhì)進(jìn)行分類;按事情發(fā)生的過程進(jìn)行分步具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)11A【解析】用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【詳解】因為 ,所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.12C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖二、填空題:本題共
13、4小題,每小題5分,共20分。13 【解析】由已知及正弦定理,三角函數(shù)恒等變換的應(yīng)用可得,從而求得,結(jié)合范圍,即可得到答案運用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點睛】本題主要考查了運用正弦定理、余弦定理和面積公式解三角形,題目較為基礎(chǔ),只要按照題意運用公式即可求出答案141【解析】本題先根據(jù)公式初步找到數(shù)列的通項公式,然后根據(jù)等差中項的性質(zhì)可解得的值,即可確定數(shù)列的通項公式,代入數(shù)列的表達(dá)式計算出數(shù)列的通項公式,然后運用裂項相消法計算出前項和,再代入不等式進(jìn)行計算可得最小正整數(shù)的值
14、【詳解】由題意,當(dāng)時,當(dāng)時,則,成等差數(shù)列,即,解得,即,即,即滿足的最小正整數(shù)的值為1故答案為:1【點睛】本題主要考查數(shù)列求通項公式、裂項相消法求前項和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計算、邏輯思維能力和數(shù)學(xué)運算能力15【解析】對首位數(shù)的奇偶進(jìn)行分類討論,利用分步乘法計數(shù)原理和分類加法計數(shù)原理可得出結(jié)果.【詳解】若首位為奇數(shù),則第一、三、五個數(shù)位上的數(shù)都是奇數(shù),其余三個數(shù)位上的數(shù)為偶數(shù),此時,符號條件的位自然數(shù)個數(shù)為個;若首位數(shù)為偶數(shù),則首位數(shù)不能為,可排在第三或第五個數(shù)位上,第二、四、六個數(shù)位上的數(shù)為奇數(shù),此時,符合條件的位自然數(shù)個數(shù)為個.綜上所述,符合條件的位自然數(shù)個數(shù)為個.故
15、答案為:.【點睛】本題考查數(shù)的排列問題,要注意首位數(shù)字的分類討論,考查分步乘法計數(shù)和分類加法計數(shù)原理的應(yīng)用,考查計算能力,屬于中等題.161.【解析】求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進(jìn)行求解即可【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率 本題正確結(jié)果:【點睛】本題主要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 ()詳見解析;()【解析】試題分析:()連接交于,得,所以面,又 ,得面,即可利用面面平行的判定定理,證得結(jié)論;()如圖,以O(shè)為坐
16、標(biāo)原點,建立空間直角坐標(biāo)系,求的平面的一個法向量 ,利用向量和向量夾角公式,即可求解與平面所成角的正弦值試題解析:()連接BD交AC于O,易知O是BD的中點,故OG/BE,BE面BEF,OG在面BEF外,所以O(shè)G/面BEF;又EF/AC,AC在面BEF外,AC/面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG面BEF;()如圖,以O(shè)為坐標(biāo)原點,分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則, , , ,設(shè)面ABF的法向量為,依題意有,令,直線AD與面ABF成的角的正弦值是 18(1)曲線的普通方程為:;曲線的普通方程為:(2)【解析】(1)消去曲線
17、參數(shù)方程中的參數(shù),求得和的普通方程.(2)設(shè)出過原點的直線的極坐標(biāo)方程,代入曲線的極坐標(biāo)方程,求得的表達(dá)式,結(jié)合三角函數(shù)值域的求法,求得的最小值.【詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設(shè)過原點的直線的極坐標(biāo)方程為;由得,所以曲線的極坐標(biāo)方程為在曲線中,.由得曲線的極坐標(biāo)方程為,所以而到直線與曲線的交點的距離為,因此,即的最小值為.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查直角坐標(biāo)方程化為極坐標(biāo)方程,考查極坐標(biāo)系下距離的有關(guān)計算,屬于中檔題.19(1) (2)為減函數(shù),為增函數(shù). (3)證明見解析【解析】(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用
18、函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,不等式,遞增得(),,先證,然后同樣放縮得出結(jié)論【詳解】解:(1)對求導(dǎo),得.因此.又因為,所以曲線在點處的切線方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,因為,所以為減函數(shù).因為,所以為增函數(shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當(dāng)時,即.令,得,即.因此,當(dāng)時,.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時,即.因此,即.令,得,即.當(dāng)時,.因為,所以,所以.所以,當(dāng)時,.所以,當(dāng)時,成
19、立.綜上所述,當(dāng)時,成立.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,這是最關(guān)鍵的一步然后一步一步放縮即可證明本題屬于困難題20(1)見解析;(2)【解析】(1)因為,所以,所以,所以數(shù)列是等差數(shù)列, 設(shè)數(shù)列的公差為,由可得,因為成等比數(shù)列,所以,所以,所以,因為,所以, 解得(舍去)或,所以,所以 (2)由(1)知,所以, 所以21(1);(2);(3)見解析.【解析】(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,求出數(shù)陣經(jīng)過變化后的矩陣,進(jìn)而可求得的值;(3)分和兩種情況討論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZSM 0057-2024“領(lǐng)跑者”評價技術(shù)要求 石油、石化及相關(guān)工業(yè)用的鋼制球閥
- T-ZJZYC 010-2024 中藥材產(chǎn)業(yè)合規(guī)管理規(guī)范
- 二零二五年度個人向新能源車輛制造商借款購買電動車的合同
- 歷年合同法司考備考輔導(dǎo)班師資聘用合同2025年度
- 2025年度集體土地租賃與特色小鎮(zhèn)建設(shè)合同
- 二零二五年度互聯(lián)網(wǎng)廣告聯(lián)盟合作協(xié)議合同
- 2025年度砂石場勞務(wù)人員薪酬及福利待遇合同
- 二零二五年度網(wǎng)紅獨家經(jīng)紀(jì)合作協(xié)議模板
- 二零二五年度電子商務(wù)平臺支付清算合同范本
- 新能源汽車項目買賣合同
- 2025新譯林版英語七年級下單詞默寫表
- 部編版小學(xué)語文三年級下冊第六單元教材解讀及教學(xué)建議
- DB11T 1315-2015 綠色建筑工程驗收規(guī)范
- 山東省2024年夏季普通高中學(xué)業(yè)水平合格考試地理試題02(解析版)
- 《ISO 41001-2018 設(shè)施管理- 管理體系 要求及使用指南》專業(yè)解讀與應(yīng)用指導(dǎo)材料之16:“8運行”(雷澤佳編制-2024)
- 2024智慧城市數(shù)據(jù)分類標(biāo)準(zhǔn)規(guī)范
- Linux系統(tǒng)管理與服務(wù)器配置-基于CentOS 7(第2版) 課件 第1章CentOS Linux 7系統(tǒng)的安裝與介紹
- 新目標(biāo)英語中考一輪教材梳理復(fù)習(xí)教案
- 2022新教材蘇教版科學(xué)5五年級下冊全冊教學(xué)設(shè)計
- 光伏電氣設(shè)備試驗方案
- 2024-2025學(xué)年全國中學(xué)生天文知識競賽考試題庫(含答案)
評論
0/150
提交評論