2022屆廣西柳州鐵路高三3月份第一次模擬考試數(shù)學試卷含解析_第1頁
2022屆廣西柳州鐵路高三3月份第一次模擬考試數(shù)學試卷含解析_第2頁
2022屆廣西柳州鐵路高三3月份第一次模擬考試數(shù)學試卷含解析_第3頁
2022屆廣西柳州鐵路高三3月份第一次模擬考試數(shù)學試卷含解析_第4頁
2022屆廣西柳州鐵路高三3月份第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),若方程恰有兩個不同實根,則正數(shù)m的取值范圍為( )ABCD2已知平面和直線a,b,則下列命題正確的是( )A若,b,則B若,則C若,則D若,b,則3已知函數(shù),其中為自然對數(shù)的

2、底數(shù),若存在實數(shù),使成立,則實數(shù)的值為( )ABCD4如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為( )ABCD5已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()ABCD6一個盒子里有4個分別標有號碼為1,2,3,4的小球,每次取出一個,記下它的標號后再放回盒子中,共取3次,則取得小球標號最大值是4的取法有( )A17種B27種C37種D47種7設是虛數(shù)單位,復數(shù)()ABCD8已知的垂心為,且是的中點,則( )A14B12C10D89過拋物線的焦點F作兩條互相垂直的弦AB,CD,設P為拋物線上的一動

3、點,若,則的最小值是( )A1B2C3D410已知向量,則向量在向量上的投影是( )ABCD11已知函數(shù),對任意的,當時,則下列判斷正確的是( )AB函數(shù)在上遞增C函數(shù)的一條對稱軸是D函數(shù)的一個對稱中心是12函數(shù)的圖象大致為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13記復數(shù)za+bi(i為虛數(shù)單位)的共軛復數(shù)為,已知z2+i,則_14實數(shù),滿足,如果目標函數(shù)的最小值為,則的最小值為_15已知向量,且,則實數(shù)m的值是_16如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點依次為、以及、一只螞蟻欲從點出發(fā),沿正方體的表

4、面爬行至,則其爬行的最短距離為_參考數(shù)據(jù):;)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,在直三棱柱中,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.18(12分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)求證:四邊形是平行四邊形.四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.19(12分)已知函數(shù).(1)當時,解不等式;(2)設不等式的解集為,若,求實數(shù)的取值范圍.20(12分)已

5、知函數(shù),其中()當時,求函數(shù)的單調(diào)區(qū)間;()設,求證:;()若對于恒成立,求的最大值21(12分)數(shù)列滿足,其前n項和為,數(shù)列的前n項積為.(1)求和數(shù)列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數(shù)m、k,均有.22(10分)在直角坐標平面中,已知的頂點,為平面內(nèi)的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關(guān)于軸的對稱點為,證明:直線過軸上的定點.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】當時,函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個不同實根,即函數(shù)和有圖像

6、兩個交點,計算,根據(jù)圖像得到答案.【詳解】當時,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個交點.,故,.根據(jù)圖像知:.故選:.【點睛】本題考查了函數(shù)的零點問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.2C【解析】根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足,b,故本命題不正確;B:當時,也可以滿足,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當,時,能得到,故本命題是正確的;D:當時,也可以滿足,b,故本命題不正確.故選:C【點睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.3A【解析】令f(x)g(x

7、)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是減函數(shù),(1,+)上是增函數(shù),故當x=1時,y有最小值10=1,而exa+4eax4,(當且僅當exa=4eax,即x=a+ln1時,等號成立);故f(x)g(x)3(當且僅當?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=1,即a=1ln1故選:A4C【解析】利用建系,假設長度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸/,建立空間直角坐標系如圖設,所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采

8、用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎題.5A【解析】利用雙曲線:的焦點到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,則的漸近線方程為故選A【點睛】本題考查雙曲線的簡單性質(zhì)的應用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計算能力,屬于中檔題.6C【解析】由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標號均不為4的球的情況,進而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標號最大值是4的取法有種

9、,故選:C【點睛】本題考查古典概型,考查補集思想的應用,屬于基礎題.7D【解析】利用復數(shù)的除法運算,化簡復數(shù),即可求解,得到答案【詳解】由題意,復數(shù),故選D【點睛】本題主要考查了復數(shù)的除法運算,其中解答中熟記復數(shù)的除法運算法則是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題8A【解析】由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因為為的垂心,所以,所以,而, 所以,因為是的中點,所以故選:A【點睛】本題考查了利用向量的線性運算和向量的數(shù)量積的運算率,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.9C【解析】設直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,從而得到,同理可得,再

10、利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.10A【解析】先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛

11、】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.11D【解析】利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,函數(shù), 對于A,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,故C錯誤; 對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎題.12A【解析】用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【詳解】因為 ,所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故

12、可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。1334i【解析】計算得到z2(2+i)23+4i,再計算得到答案.【詳解】z2+i,z2(2+i)23+4i,則故答案為:34i【點睛】本題考查了復數(shù)的運算,共軛復數(shù),意在考查學生的計算能力.14【解析】作出不等式組對應的平面區(qū)域,利用目標函數(shù)的最小值為,確定出的值,進而確定出C點坐標,結(jié)合目標函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線的截距最大時,取得最小值,此時直線為,作出

13、直線,交于A點,由圖象可知,目標函數(shù)在該點取得最小值,所以直線也過A點,由,得,代入,得,所以點C的坐標為等價于點與原點連線的斜率,所以當點為點C時,取得最小值,最小值為,故答案為:.【點睛】該題考查的是有關(guān)線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標函數(shù)的意義求得最優(yōu)解,屬于中檔題目.151【解析】根據(jù)即可得出,從而求出m的值【詳解】解:;m1故答案為:1【點睛】本題考查向量垂直的充要條件,向量數(shù)量積的坐標運算16【解析】根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點間距離的三角函數(shù)表達式.根據(jù)所給參考數(shù)據(jù)即

14、可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和.將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.【點睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內(nèi)求解的方法,三角函數(shù)誘導公式的應用,綜合性強,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析(2)見解析【解析】(1)取的中點D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,和都是平面內(nèi)的直線

15、且交于點,由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結(jié),.在中,P,D分別為,中點,且.在直三棱柱中,.Q為棱的中點,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.18(1);(2)證明見解析;能,.【解析】(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)設,寫出切線的方程,解方程組求出點的坐標. 設點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,可得線段相互平分,即

16、證四邊形是平行四邊形;若四邊形為矩形,則,求出,即得點Q的坐標.【詳解】(1)因為,所以,即拋物線C的方程是. (2)證明:由得,.設, 則直線PA的方程為(),則直線PB的方程為(),由()和()解得:,所以.設點,則直線AB的方程為.由得,則,所以,所以線段PQ被x軸平分,即被線段CD平分.在中,令解得,所以,同理得,所以線段CD的中點坐標為,即,又因為直線PQ的方程為,所以線段CD的中點在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.由知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當點Q為,即為拋物線的焦點時,四邊形是矩形.【點睛】本題考查拋物線的方程,考查直

17、線和拋物線的位置關(guān)系,屬于難題.19(1)或;(2)【解析】(1)使用零點分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解】(1)當時,原不等式可化為.當時,則,所以;當時,則,所以;當時,則,所以.綜上所述:當時,不等式的解集為或.(2)由,則,由題可知:在恒成立,所以,即,即,所以故所求實數(shù)的取值范圍是.【點睛】本題考查零點分段求解含絕對值不等式,熟練使用分類討論的方法,以及知識的交叉應用,同時掌握等價轉(zhuǎn)化的思想,屬中檔題.20()函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;()證明見解析;()

18、.【解析】()利用二次求導可得,所以在上為增函數(shù),進而可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;()利用導數(shù)可得在區(qū)間上存在唯一零點,所以函數(shù)在遞減,在,遞增,則,進而可證;()條件等價于對于恒成立,構(gòu)造函數(shù),利用導數(shù)可得的單調(diào)性,即可得到的最小值為,再次構(gòu)造函數(shù)(a),利用導數(shù)得其單調(diào)區(qū)間,進而求得最大值【詳解】()當時,則,所以,又因為,所以在上為增函數(shù),因為,所以當時,為增函數(shù),當時,為減函數(shù),即函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(),則令,則(1),所以在區(qū)間上存在唯一零點,設零點為,則,且,當時,當,所以函數(shù)在遞減,在,遞增,由,得,所以,由于,從而;()因為對于恒成立,即對于恒成立,不妨令,因為,所以的解為,則當時,為增函數(shù),當時,為減函數(shù),所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論