2022屆山東省校級(jí)聯(lián)考高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
2022屆山東省校級(jí)聯(lián)考高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
2022屆山東省校級(jí)聯(lián)考高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
2022屆山東省校級(jí)聯(lián)考高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
2022屆山東省校級(jí)聯(lián)考高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知P是雙曲線漸近線上一點(diǎn),是雙曲線的左、右焦點(diǎn),記,PO,的斜率為,k,若,-2k,成等差數(shù)列,則此雙曲線的離心率為( )ABCD2設(shè),分別是中,所對(duì)邊的邊長,則直線與的位置關(guān)系是( )A平行B重合C垂直D相交但不垂直3已知復(fù)數(shù)滿足,則=(

2、 )ABCD4甲乙丙丁四人中,甲說:我年紀(jì)最大,乙說:我年紀(jì)最大,丙說:乙年紀(jì)最大,丁說:我不是年紀(jì)最大的,若這四人中只有一個(gè)人說的是真話,則年紀(jì)最大的是( )A甲B乙C丙D丁5已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是( )ABCD6已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是( )A的虛部為B復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第三象限C的共軛復(fù)數(shù)D7若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)的值為( )A或BCD或8在平面直角坐標(biāo)系中,已知是圓上兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項(xiàng)和恒成立,則實(shí)數(shù)的取值范圍是( )ABCD9已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則雙曲線的離心率為( )ABC3D

3、410已知復(fù)數(shù)滿足,(為虛數(shù)單位),則( )ABCD311已知集合,,則ABCD12設(shè),則關(guān)于的方程所表示的曲線是( )A長軸在軸上的橢圓B長軸在軸上的橢圓C實(shí)軸在軸上的雙曲線D實(shí)軸在軸上的雙曲線二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是_.14已知實(shí)數(shù)x,y滿足,則的最大值為_.15若函數(shù)為偶函數(shù),則_.16已知的展開式中項(xiàng)的系數(shù)與項(xiàng)的系數(shù)分別為135與,則展開式所有項(xiàng)系數(shù)之和為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實(shí)數(shù),使得

4、不等式在上恒成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.18(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測(cè),發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID19),簡(jiǎn)稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.為了預(yù)測(cè)在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,10)建立模型和.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為累計(jì)確診人數(shù)y與

5、時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:時(shí)間1月25日1月26日1月27日1月28日1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)19752744451559747111()當(dāng)1月25日至1月27日這3天的誤差(模型預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對(duì)值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請(qǐng)判斷(2)的回歸方程是否可靠?()2020年1月24日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明

6、顯低于預(yù)測(cè)數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請(qǐng)判斷預(yù)防措施是否有效?附:對(duì)于一組數(shù)據(jù)(,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850719(12分)已知函數(shù)(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍20(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.21(12分)已知在中,角,的對(duì)邊分別為,且.(1)求的值;(2)若,求面積的最大值.22(10分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范

7、圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),則,由,成等差數(shù)列,可得,化為,即,可得,故選:【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平2C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩

8、直線垂直考點(diǎn):直線與直線的位置關(guān)系3B【解析】利用復(fù)數(shù)的代數(shù)運(yùn)算法則化簡(jiǎn)即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.4C【解析】分別假設(shè)甲乙丙丁說的是真話,結(jié)合其他人的說法,看是否只有一個(gè)說的是真話,即可求得年紀(jì)最大者,即可求得答案.【詳解】假設(shè)甲說的是真話,則年紀(jì)最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個(gè)人說的是真話,故甲說的不是真話,年紀(jì)最大的不是甲;假設(shè)乙說的是真話,則年紀(jì)最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個(gè)人說的是真話,故乙說謊,年紀(jì)最大的也不是乙;假設(shè)丙說的是真話

9、,則年紀(jì)最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個(gè)人說的是真話,故丙在說謊,年紀(jì)最大的也不是乙;假設(shè)丁說的是真話,則年紀(jì)最大的不是丁,而已知只有一個(gè)人說的是真話,那么甲也說謊,說明甲也不是年紀(jì)最大的,同時(shí)乙也說謊,說明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說明這種情形不會(huì)發(fā)生,考查了分析能力和推理能力,屬于中檔題.5C【解析】利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,

10、故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).6D【解析】利用的周期性先將復(fù)數(shù)化簡(jiǎn)為即可得到答案.【詳解】因?yàn)?,所以的周期?,故,故的虛部為2,A錯(cuò)誤;在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第二象限,B錯(cuò)誤;的共軛復(fù)數(shù)為,C錯(cuò)誤;,D正確.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識(shí),是一道基礎(chǔ)題.7C【解析】試題分析:因?yàn)閺?fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點(diǎn):純虛數(shù)8B【解析】由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中

11、點(diǎn)的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過裂項(xiàng)的方法求的前項(xiàng)和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,.故選:【點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識(shí),是一道不錯(cuò)的綜合題.9A【解析】根據(jù)題意,由拋物線的方程可得其焦點(diǎn)坐標(biāo),由此可得雙曲線的焦點(diǎn)坐標(biāo),由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計(jì)算可得答案【詳解】根據(jù)題意,拋物線的焦點(diǎn)為,則雙曲線的焦點(diǎn)也為,即,則

12、有,解可得,雙曲線的離心率.故選:A【點(diǎn)睛】本題主要考查雙曲線、拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是求出拋物線焦點(diǎn)的坐標(biāo),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平10A【解析】,故,故選A.11D【解析】因?yàn)?所以,故選D12C【解析】根據(jù)條件,方程即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型【詳解】解:k1,1+k0,k2-10,方程,即,表示實(shí)軸在y軸上的雙曲線,故選C【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵二、填空題:本題共4小題,每小題5分,共20分。13【解析】首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求

13、得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點(diǎn)睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.141【解析】直接用表示出,然后由不等式性質(zhì)得出結(jié)論【詳解】由題意,又,即,的最大值為1故答案為:1【點(diǎn)睛】本題考查不等式的性質(zhì),掌握不等式的性質(zhì)是解題關(guān)鍵15【解析】二次函數(shù)為偶函數(shù)說明一次項(xiàng)系數(shù)為0,求得參數(shù),將代入表達(dá)式即可求解【詳解】由為偶函數(shù),知其一次項(xiàng)的系數(shù)為0,所以,所以,故答案為:-5【點(diǎn)睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,

14、屬于基礎(chǔ)題1664【解析】由題意先求得的值,再令求出展開式中所有項(xiàng)的系數(shù)和.【詳解】的展開式中項(xiàng)的系數(shù)與項(xiàng)的系數(shù)分別為135與,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點(diǎn)睛】本題考查了二項(xiàng)式定理,考查了賦值法求多項(xiàng)式展開式的系數(shù)和,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2)見解析;(3)存在,1.【解析】(1),求出單調(diào)區(qū)間,進(jìn)而求出,即可證明結(jié)論;(2)對(duì)(或)是否恒成立分類討論,若恒成立,沒有極值點(diǎn),若不恒成立,求出的解,即可求出結(jié)論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)

15、遞減,在都存在,不滿足,當(dāng)時(shí),設(shè),且,只需求出在單調(diào)遞增時(shí)的取值范圍即可.【詳解】(1),當(dāng)時(shí),當(dāng)時(shí),故.(2)由題知,當(dāng)時(shí),所以在上單調(diào)遞減,沒有極值;當(dāng)時(shí),得,當(dāng)時(shí),;當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增.故在處取得極小值,無極大值.(3)不妨令,設(shè)在恒成立,在單調(diào)遞增,在恒成立,所以,當(dāng)時(shí),由(2)知,當(dāng)時(shí),在上單調(diào)遞減,恒成立;所以不等式在上恒成立,只能.當(dāng)時(shí),由(1)知在上單調(diào)遞減,所以,不滿足題意.當(dāng)時(shí),設(shè),因?yàn)?,所以,即,所以在上單調(diào)遞增,又,所以時(shí),恒成立,即恒成立,故存在,使得不等式在上恒成立,此時(shí)的最小值是1.【點(diǎn)睛】本題考查導(dǎo)數(shù)綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、極值最值、不等

16、式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.18(1)適宜(2)(3)()回歸方程可靠()防護(hù)措施有效【解析】(1)根據(jù)散點(diǎn)圖即可判斷出結(jié)果.(2)設(shè),則,求出,再由回歸方程過樣本中心點(diǎn)求出,即可求出回歸方程.(3)()利用表中數(shù)據(jù),計(jì)算出誤差即可判斷回歸方程可靠;()當(dāng)時(shí),與真實(shí)值作比較即可判斷有效.【詳解】(1)根據(jù)散點(diǎn)圖可知:適宜作為累計(jì)確診人數(shù)與時(shí)間變量的回歸方程類型;(2)設(shè),則,;(3)()時(shí),當(dāng)時(shí),當(dāng)時(shí),所以(2)的回歸方程可靠:()當(dāng)時(shí),10150遠(yuǎn)大于7111,所以防護(hù)措施有效.【點(diǎn)睛】本題考查了函數(shù)模型的應(yīng)用,在求非線性回歸方程時(shí),現(xiàn)將非

17、線性的化為線性的,考查了誤差的計(jì)算以及用函數(shù)模型分析數(shù)據(jù),屬于基礎(chǔ)題.19(1)或 ;(2)【解析】(1)通過討論的范圍,將絕對(duì)值符號(hào)去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)問題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當(dāng)時(shí),原不等式可化為,解得;當(dāng)時(shí),原不等式可化為,解得,不滿足,舍去;當(dāng)時(shí),原不等式可化為,解得,所以不等式的解集為(2)因?yàn)?,所以若函?shù)存在零點(diǎn)則可轉(zhuǎn)化為函數(shù)與的圖像存在交點(diǎn),函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知【點(diǎn)睛】該題考查的是有關(guān)不等式的問題,涉及到的知識(shí)點(diǎn)有分類討論求絕對(duì)值不等式的解集,將

18、零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)的問題來解決,數(shù)形結(jié)合思想的應(yīng)用,屬于簡(jiǎn)單題目.20(1);(2)見解析.【解析】(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為、,由(1)知,且滿足,于是得出,由得,利用正切函數(shù)的單調(diào)性推導(dǎo)出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),當(dāng)時(shí),則函數(shù)在上單調(diào)遞增;當(dāng)時(shí),則函數(shù)在上單調(diào)遞減;當(dāng)時(shí),則函數(shù)在上單調(diào)遞增.,.所以,函數(shù)在與不存在零點(diǎn),在區(qū)間和上各存在一個(gè)零點(diǎn).綜上所述,函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點(diǎn),所以,函數(shù)在區(qū)間與上各存在一個(gè)極值點(diǎn)、,且,且滿足即,又,即,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問題,同時(shí)也考查了利用導(dǎo)數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.21 (1);(2) .【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得詳解:(1)由題意及正、余弦定理得, 整理得,(2)由題意得, ,. 由余弦定理得, ,當(dāng)且僅當(dāng)時(shí)等號(hào)成立 面積的最大值為點(diǎn)睛:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論