![2022屆山西省忻州市高考數(shù)學(xué)一模試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view/ac30caeeeaa7e713ae66304a3f5498af/ac30caeeeaa7e713ae66304a3f5498af1.gif)
![2022屆山西省忻州市高考數(shù)學(xué)一模試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view/ac30caeeeaa7e713ae66304a3f5498af/ac30caeeeaa7e713ae66304a3f5498af2.gif)
![2022屆山西省忻州市高考數(shù)學(xué)一模試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view/ac30caeeeaa7e713ae66304a3f5498af/ac30caeeeaa7e713ae66304a3f5498af3.gif)
![2022屆山西省忻州市高考數(shù)學(xué)一模試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view/ac30caeeeaa7e713ae66304a3f5498af/ac30caeeeaa7e713ae66304a3f5498af4.gif)
![2022屆山西省忻州市高考數(shù)學(xué)一模試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view/ac30caeeeaa7e713ae66304a3f5498af/ac30caeeeaa7e713ae66304a3f5498af5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為( )ABCD2已知等差數(shù)列中,則數(shù)列的前10項(xiàng)和( )A100B210C380D4003已知中內(nèi)角所對(duì)應(yīng)的
2、邊依次為,若,則的面積為( )ABCD4若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為( )ABCD5已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于( )AB1CD26已知中,角、所對(duì)的邊分別是,則“”是“”的( )A充分不必要條件B必要不充分條件C既不充分也不必要條件D充分必要條件7已知平面向量,滿足,且,則與的夾角為( )ABCD8設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為( )A2BCD39設(shè)函數(shù)的定義域?yàn)?,滿足,且當(dāng)時(shí),.若對(duì)任意,都有,則的取值范圍是( ).ABCD10設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為( )AB2CD11下圖為一個(gè)正四面體的側(cè)面展開
3、圖,為的中點(diǎn),則在原正四面體中,直線與直線所成角的余弦值為( )ABCD12已知集合,則=( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在中,角,的對(duì)邊分別是,若,則的面積的最大值為_.14在的展開式中,常數(shù)項(xiàng)為_.(用數(shù)字作答)15展開式中的系數(shù)為_16的展開式中含的系數(shù)為_(用數(shù)字填寫答案)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù),.(1)若時(shí),解不等式;(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.18(12分)萬(wàn)眾矚目的第14屆全國(guó)冬季運(yùn)動(dòng)運(yùn)會(huì)(簡(jiǎn)稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校
4、放寒假,寒假結(jié)束后,某校工會(huì)對(duì)全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請(qǐng)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再?gòu)倪@6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82
5、8,19(12分)在正三棱柱ABCA1B1C1中,已知AB1,AA12,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點(diǎn),以為正交基底,建立如圖所示的空間直角坐標(biāo)系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值20(12分)如圖,在四邊形中,.(1)求的長(zhǎng);(2)若的面積為6,求的值.21(12分)已知在多面體中,平面平面,且四邊形為正方形,且/,點(diǎn),分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.22(10分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).(1)若a,且a0,證明:函數(shù)有局部對(duì)稱點(diǎn);(2)若
6、函數(shù)在定義域內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)?,?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡(jiǎn)得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問(wèn)題.2B【解析】設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,
7、,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.3A【解析】由余弦定理可得,結(jié)合可得a,b,再利用面積公式計(jì)算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查學(xué)生的基本計(jì)算能力,是一道容易題.4D【解析】推導(dǎo)出函數(shù)的圖象關(guān)于直線對(duì)稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對(duì)的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,所以,函數(shù)的圖象關(guān)于直線對(duì)稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對(duì)出現(xiàn),不合題意.所以,即,解得或.當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí)
8、,等號(hào)成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對(duì)稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對(duì)參數(shù)的值進(jìn)行檢驗(yàn),考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.5B【解析】先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對(duì)應(yīng)的的值即可.【詳解】因?yàn)?,所以,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.6D【解析】由大邊對(duì)大角定理結(jié)合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對(duì)的邊分別是、,由大邊對(duì)大角定理知“”“”,“”“”.因此,“”
9、是“”的充分必要條件.故選:D.【點(diǎn)睛】本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎(chǔ)知識(shí),考查邏輯推理能力,是基礎(chǔ)題7C【解析】根據(jù), 兩邊平方,化簡(jiǎn)得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄浚瑵M足,且, 所以,所以,所以 ,所以,所以與的夾角為.故選:C【點(diǎn)睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.8A【解析】分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值. 詳解:由得到,故無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到
10、直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.9B【解析】求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時(shí),又,所以至少小于7,此時(shí),令,得,解得或,結(jié)合圖象,故.故選:B.【點(diǎn)睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.10A【解析】由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率【詳解】由題意,由雙曲線定義得,從而得,在中,由余弦定理得,化簡(jiǎn)得故選:A【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)
11、的距離,再由余弦定理得出的齊次式11C【解析】將正四面體的展開圖還原為空間幾何體,三點(diǎn)重合,記作,取中點(diǎn),連接,即為與直線所成的角,表示出三角形的三條邊長(zhǎng),用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點(diǎn)重合,記作:則為中點(diǎn),取中點(diǎn),連接,設(shè)正四面體的棱長(zhǎng)均為,由中位線定理可得且,所以即為與直線所成的角, ,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點(diǎn)睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.12D【解析】先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以 .故選:D【點(diǎn)睛
12、】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】化簡(jiǎn)得到,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計(jì)算得到答案.【詳解】,即,故.根據(jù)余弦定理:,即.當(dāng)時(shí)等號(hào)成立,故.故答案為:.【點(diǎn)睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.14【解析】的展開式的通項(xiàng)為,取計(jì)算得到答案.【詳解】的展開式的通項(xiàng)為:,取得到常數(shù)項(xiàng).故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.1530【解析】先將問(wèn)題轉(zhuǎn)化為二項(xiàng)式的系數(shù)問(wèn)題,利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的第項(xiàng),令的指數(shù)分別
13、等于2,4,求出特定項(xiàng)的系數(shù)【詳解】由題可得:展開式中的系數(shù)等于二項(xiàng)式展開式中的指數(shù)為2和4時(shí)的系數(shù)之和,由于二項(xiàng)式的通項(xiàng)公式為,令,得展開式的的系數(shù)為,令,得展開式的的系數(shù)為,所以展開式中的系數(shù),故答案為30.【點(diǎn)睛】本題考查利用二項(xiàng)式展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)的問(wèn)題,考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題16 【解析】由題意得,二項(xiàng)式展開式的通項(xiàng)為,令,則,所以得系數(shù)為三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)(2)【解析】(1)零點(diǎn)分段法,分,討論即可;(2)當(dāng)時(shí),原問(wèn)題可轉(zhuǎn)化為:存在,使不等式成立,即.【詳解】解:(1)若時(shí),當(dāng)時(shí),原不等式可化為,解得
14、,所以,當(dāng)時(shí),原不等式可化為,解得,所以,當(dāng)時(shí),原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當(dāng)時(shí),由得,即,故得,又由題意知:,即,故的范圍為.【點(diǎn)睛】本題考查解絕對(duì)值不等式以及不等式能成立求參數(shù),考查學(xué)生的運(yùn)算能力,是一道容易題.18(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解析】(1)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表,求出,從而有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān)(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識(shí)講座記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應(yīng)的概率
15、,由此能求出的分布列和數(shù)學(xué)期望【詳解】解:(1)由題意得下表:男女合計(jì)冰雪迷402060非冰雪迷202040合計(jì)6040100的觀測(cè)值為所以有的把握認(rèn)為該校教職工是“冰雪迷”與“性別”有關(guān).(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,所以的分布列為012【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題19(1).(2).【解析】(1)先根據(jù)空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2)分別求得平面BFC1的
16、一個(gè)法向量和平面BCC1的一個(gè)法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答 (1) 因?yàn)锳B1,AA12,則F(0,0,0),A,C,B,E,所以(1,0,0),記異面直線AC和BE所成角為,則cos|cos|,所以異面直線AC和BE所成角的余弦值為.(2) 設(shè)平面BFC1的法向量為= (x1,y1,z1)因?yàn)?,則取x14,得平面BFC1的一個(gè)法向量為(4,0,1)設(shè)平面BCC1的法向量為(x2,y2,z2)因?yàn)椋?0,0,2),則取x2 得平面BCC1的一個(gè)法向量為(,1,0),所以cos =根據(jù)圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點(diǎn)睛】本題
17、主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.20 (1) (2) 【解析】(1)利用余弦定理可得的長(zhǎng);(2)利用面積得出,結(jié)合正弦定理可得.【詳解】解:(1)由題可知.在中,所以.(2),則.又,所以.【點(diǎn)睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時(shí)一般選用正弦定理,已知邊較多時(shí)一般選用余弦定理.21(1)證明見解析;(2).【解析】(1)構(gòu)造直線所在平面,由面面平行推證線面平行;(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過(guò)點(diǎn)交于點(diǎn),連接,
18、如下圖所示:因?yàn)槠矫嫫矫?,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因?yàn)闉橹悬c(diǎn),故可得/,為中點(diǎn);又因?yàn)樗倪呅螢榈妊菪?,是的中點(diǎn),故可得/;又,且平面,平面,故面面,又因?yàn)槠矫?,故?即證.(2)連接,作交于點(diǎn),由(1)可知平面,又因?yàn)?,故可得平面,則;又因?yàn)?,故可得即,兩兩垂直,則分別以,為,軸建立空間直角坐標(biāo)系,則,設(shè)面的法向量為,則,則,可取,設(shè)平面的法向量為,則,則,可取,可知平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎(chǔ)題.22(1)見解析(2)(3)【解析】(1)若函數(shù)有局部對(duì)稱點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 委托經(jīng)營(yíng)協(xié)議終止
- 三年級(jí)數(shù)學(xué)上冊(cè)口算競(jìng)賽題
- 三年級(jí)數(shù)學(xué)口算題600道
- 2024-2025學(xué)年七年級(jí)數(shù)學(xué)上冊(cè)第5章走進(jìn)圖形世界5.4主視圖左視圖俯視圖教案新版蘇科版
- 6《飛向藍(lán)天的恐龍》表格式公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)公開課公開課一等獎(jiǎng)創(chuàng)新教案及作業(yè)設(shè)計(jì) 2課時(shí)
- 2025年春統(tǒng)編版語(yǔ)文一年級(jí)下冊(cè)第四單元單元任務(wù)群整體公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 武漢體育學(xué)院《計(jì)算思維與程序設(shè)計(jì)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 中班月工作要點(diǎn)計(jì)劃月歷表范文集錦(30篇)
- 廣州科技職業(yè)技術(shù)大學(xué)《醫(yī)學(xué)影像技術(shù)實(shí)驗(yàn)Ⅰ》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東科貿(mào)職業(yè)學(xué)院《企業(yè)仿真綜合實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年騎電動(dòng)車撞傷人私了協(xié)議書范文
- 四年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)及答案
- 繪本教學(xué)課件
- 2024年中國(guó)不銹鋼炒鍋市場(chǎng)調(diào)查研究報(bào)告
- 江蘇省南通市2023-2024學(xué)年小升初語(yǔ)文試卷(含答案)
- 2024-2030年色素病變激光治療行業(yè)市場(chǎng)現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評(píng)估規(guī)劃分析研究報(bào)告
- 人教版四年級(jí)上冊(cè)數(shù)學(xué)【選擇題】專項(xiàng)練習(xí)100題附答案
- 結(jié)構(gòu)力學(xué)仿真軟件:STAAD.Pro:橋梁結(jié)構(gòu)建模與分析教程
- 1-1《送瘟神》課件-高教版中職語(yǔ)文職業(yè)模塊
- CB-T4528-2024《船舶行業(yè)企業(yè)應(yīng)急管理要求》
- 22G101三維彩色立體圖集
評(píng)論
0/150
提交評(píng)論