版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考生要認(rèn)真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1定義兩種運算“”與“”,對任意,滿足下列運算性質(zhì):,;() ,則(2020)(20202018)的值為( )ABCD2從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則ABCD3下圖
2、是民航部門統(tǒng)計的某年春運期間,六個城市售出的往返機(jī)票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數(shù)據(jù)統(tǒng)計圖,以下敘述不正確的是( )A深圳的變化幅度最小,北京的平均價格最高B天津的往返機(jī)票平均價格變化最大C上海和廣州的往返機(jī)票平均價格基本相當(dāng)D相比于上一年同期,其中四個城市的往返機(jī)票平均價格在增加4在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是( )ABCD25已知函數(shù),若成立,則的最小值為( )A0B4CD6已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為( )A2B5CD7設(shè)集合,集合 ,則 =( )ABCDR8執(zhí)行如圖所
3、示的程序框圖,若輸出的,則處應(yīng)填寫( )ABCD9設(shè)是等差數(shù)列,且公差不為零,其前項和為則“,”是“為遞增數(shù)列”的( )A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件10已知函數(shù)(其中,)的圖象關(guān)于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:直線是函數(shù)圖象的一條對稱軸;點是函數(shù)的一個對稱中心;函數(shù)與的圖象的所有交點的橫坐標(biāo)之和為.其中正確的判斷是( )ABCD11如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是( )AACBEBEF平面ABCDC三棱錐A-BEF的體積為定值D異面直線AE,B
4、F所成的角為定值12某高中高三(1)班為了沖刺高考,營造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進(jìn)行了問話,得到回復(fù)如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細(xì)節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是( )A小王或小李B小王C小董D小李二、填空題:本題共4小題,每小題5分,共20分。13從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件
5、抽到三等品,且已知, ,則事件“抽到的產(chǎn)品不是一等品”的概率為_14若函數(shù)的圖像與直線的三個相鄰交點的橫坐標(biāo)分別是,則實數(shù)的值為_15公比為正數(shù)的等比數(shù)列的前項和為,若,則的值為_16若雙曲線的離心率為,則雙曲線的漸近線方程為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè),為的前n項和,求證:.18(12分)在直角坐標(biāo)系中,已知直線的直角坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線和直線的極坐標(biāo)方程;(2)已知直線與曲線、相交于異于極點的點
6、,若的極徑分別為,求的值.19(12分)已知ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C(1)求cosC的值;(2)若a3,c,求ABC的面積20(12分)已知函數(shù).其中是自然對數(shù)的底數(shù).(1)求函數(shù)在點處的切線方程;(2)若不等式對任意的恒成立,求實數(shù)的取值范圍.21(12分)已知,且(1)請給出的一組值,使得成立;(2)證明不等式恒成立22(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)新
7、運算的定義分別得出2020和20202018的值,可得選項.【詳解】由() ,得(+2),又,所以, ,以此類推,202020182018,又,所以, ,以此類推,2020,所以(2020)(20202018),故選:B.【點睛】本題考查定義新運算,關(guān)鍵在于理解,運用新定義進(jìn)行求值,屬于中檔題.2B【解析】由題意知,由,知,由此能求出【詳解】由題意知,解得,故選:B【點睛】本題考查離散型隨機(jī)變量的方差的求法,解題時要認(rèn)真審題,仔細(xì)解答,注意二項分布的靈活運用3D【解析】根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據(jù)折線圖可知深圳的變化幅度最小,
8、根據(jù)條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據(jù)折線圖可知天津的往返機(jī)票平均價格變化最大,所以B選項敘述正確.對于C選項,根據(jù)條形圖可知上海和廣州的往返機(jī)票平均價格基本相當(dāng),所以C選項敘述正確.對于D選項,根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機(jī)票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據(jù)條形圖和折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.4B【解析】畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故.當(dāng),即時等號成立.故選:.【點睛】本題考
9、查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.5A【解析】令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】(),令:,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.6D【解析】根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,故最大面的面積為.選D.【點睛】本題主要考查三視圖的識別,復(fù)雜的三視圖還原為幾何體時,一般借助長方體來實現(xiàn).7D【
10、解析】試題分析:由題,選D考點:集合的運算8B【解析】模擬程序框圖運行分析即得解.【詳解】;.所以處應(yīng)填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.9A【解析】根據(jù)等差數(shù)列的前項和公式以及充分條件和必要條件的定義進(jìn)行判斷即可【詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時,此時,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故
11、選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項和公式是解決本題的關(guān)鍵,屬于中等題10C【解析】分析:根據(jù)最低點,判斷A=3,根據(jù)對稱中心與最低點的橫坐標(biāo)求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否詳解:因為為對稱中心,且最低點為,所以A=3,且 由 所以,將帶入得 ,所以由此可得錯誤,正確,當(dāng)時,所以與 有6個交點,設(shè)各個交點坐標(biāo)依次為 ,則,所以正確所以選C點睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題11D【解析】A通過線面的垂直關(guān)系可證真假;B根據(jù)線面平行可證真假;C根據(jù)三棱錐的體積計算的公式可證
12、真假;D根據(jù)列舉特殊情況可證真假.【詳解】A因為,所以平面,又因為平面,所以,故正確;B因為,所以,且平面,平面,所以平面,故正確;C因為為定值,到平面的距離為,所以為定值,故正確;D當(dāng),取為,如下圖所示:因為,所以異面直線所成角為,且,當(dāng),取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).12D【解析】根據(jù)題意,分別假設(shè)一個正確,推理出與假設(shè)不矛盾
13、,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應(yīng)“入班即靜”,而否定小董說法后得出:小王對應(yīng)“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應(yīng)“天道酬勤”,否定小李的說法后得出:小李對應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對應(yīng)“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點睛】本題考查推理證明的實際應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。130.35【解析】根據(jù)
14、對立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,抽到不是一等品的概率是,故答案為:【點睛】本題考查了求互斥事件與對立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題144【解析】由題可分析函數(shù)與的三個相鄰交點中不相鄰的兩個交點距離為,即,進(jìn)而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的1556【解析】根據(jù)已知條件求等比數(shù)列的首項和公比,再代入等比數(shù)列的通項公式,即可得到答案.【詳解】,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式和前項和公式,考查函數(shù)與
15、方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.16【解析】利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因為雙曲線的離心率為,所以,即,因為雙曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點睛】本題考查雙曲線的幾何性質(zhì);考查運算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)證明見解析【解析】(1)利用與的關(guān)系即可求解. (2)利用裂項求和法即可求解.【詳解】解析:(1)當(dāng)時,;當(dāng),可得,又當(dāng)時也成立,;(2),【點睛】本題主要考查了與的關(guān)系、裂項求和法,屬于
16、基礎(chǔ)題.18(1),.(2)【解析】(1)先將曲線的參數(shù)方程化為直角坐標(biāo)方程,即可代入公式化為極坐標(biāo);根據(jù)直線的直角坐標(biāo)方程,求得傾斜角,即可得極坐標(biāo)方程.(2)將直線的極坐標(biāo)方程代入曲線、可得,進(jìn)而代入可得的值.【詳解】(1)曲線的參數(shù)方程為(為參數(shù)),消去得,把,代入得,從而得的極坐標(biāo)方程為,直線的直角坐標(biāo)方程為,其傾斜角為,直線的極坐標(biāo)方程為.(2)將代入曲線的極坐標(biāo)方程分別得到,則.【點睛】本題考查了參數(shù)方程化為普通方程的方法,直角坐標(biāo)方程化為極坐標(biāo)方程的方法,極坐標(biāo)的幾何意義,屬于中檔題.19(1);(2)或【解析】(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根
17、據(jù)余弦定理求出b1或b3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b23c24ab,即a2+b2c2ab,cosC;(2)把a(bǔ)3,c,代入3a2+3b23c24ab得:b1或b3,cosC,C為三角形內(nèi)角,sinC,SABCabsinC3bb,則ABC的面積為或【點睛】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進(jìn)行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.20(1);(2).【解析】(1)利用導(dǎo)數(shù)的幾何意義求出切線的斜率,再求出切點坐標(biāo)即可得在點處的切線方程;(2)令,然后利用
18、導(dǎo)數(shù)并根據(jù)a的情況研究函數(shù)的單調(diào)性和最值.【詳解】(1),又,切線方程為,即.(2)令,若,則在上單調(diào)遞減,又,恒成立,在上單調(diào)遞減,又,恒成立.若,令,易知與在上單調(diào)遞減,在上單調(diào)遞減,當(dāng)即時,在上恒成立,在上單調(diào)遞減,即在上單調(diào)遞減,又,恒成立,在上單調(diào)遞減,又,恒成立,當(dāng)即時,使,在遞增,此時,在遞增,不合題意.綜上,實數(shù)的取值范圍是.【點睛】本題主要考查導(dǎo)數(shù)的幾何意義及構(gòu)造函數(shù)解決含參數(shù)的不等式恒成立時求參數(shù)的取值范圍問題,第二問的難點是構(gòu)造函數(shù)后二次求導(dǎo)問題,對分類討論思想及化歸與等價轉(zhuǎn)化思想要求較高,難度較大,屬拔高題.21(1)(答案不唯一)(2)證明見解析【解析】(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,因為,所以.所以,即.因為,所以,因為,所以,所以.【點睛】考查不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通信網(wǎng)絡(luò)防水防腐施工合同
- 科技公司會議室改造合同
- 醫(yī)療設(shè)備采購及合同規(guī)范指南
- 廣西梧州市(2024年-2025年小學(xué)五年級語文)人教版專題練習(xí)(上學(xué)期)試卷及答案
- 【初中道法】認(rèn)識生命說課課件-2024-2025學(xué)年統(tǒng)編版道德與法治七年級上冊
- 公開課聽課心得體會(15篇)
- 糖尿病并發(fā)癥百科介紹
- 癌癥流行病學(xué)
- 銷售年度計劃范文模板(18篇下載)
- 環(huán)境調(diào)查報告
- 失血性休克患者的麻醉處理
- 2024網(wǎng)站滲透測試報告
- DG-TJ08-2433A-2023 外墻保溫一體化系統(tǒng)應(yīng)用技術(shù)標(biāo)準(zhǔn)(預(yù)制混凝土反打保溫外墻)
- 九年級上期中考試質(zhì)量分析
- 《共情的力量》課件
- 單詞默寫表(素材)-2023-2024學(xué)年人教PEP版英語五年級上冊
- 屠宰行業(yè)PEST分析
- JBT 14191-2023 管道帶壓開孔機(jī) (正式版)
- 肌張力障礙性震顫的護(hù)理查房
- 湖北省武漢市江夏區(qū)2023-2024學(xué)年七年級上學(xué)期期中數(shù)學(xué)試題
- tpm培訓(xùn)學(xué)習(xí)心得體會
評論
0/150
提交評論