版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1某校團(tuán)委對“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.02
2、46.6357.87910.828得到正確結(jié)論是( )A有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”B有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”D在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”2已知雙曲線的右焦點為為坐標(biāo)原點,以為直徑的圓與雙 曲線的一條漸近線交于點及點,則雙曲線的方程為( )ABCD3在平面直角坐標(biāo)系中,已知點,若動點滿足 ,則的取值范圍是( )ABCD4若ab0,0c1,則AlogaclogbcBlogcalogcbCacbc Dcacb5若實數(shù)滿足不等式組則的最小
3、值等于( )ABCD6復(fù)數(shù)的( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限7某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、),根據(jù)該圖,以下結(jié)論一定正確的是( )A年該工廠的棉簽產(chǎn)量最少B這三年中每年抽紙的產(chǎn)量相差不明顯C三年累計下來產(chǎn)量最多的是口罩D口罩的產(chǎn)量逐年增加8設(shè),則( )ABCD9如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當(dāng)運動時,下列結(jié)論中不正確的是A在內(nèi)總存在與平面平行的線段B平面平面C三棱錐的體積為定值D可能為直角三角形10如圖是一個幾何體的三視圖,則這個幾何體的體積
4、為( )ABCD11已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為( )ABCD12已知函數(shù),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為ABCD二、填空題:本題共4小題,每小題5分,共20分。13雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為_,離心率為_.14一個四面體的頂點在空間直角坐標(biāo)系中的坐標(biāo)分別是,則該四面體的外接球的體積為_15某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_;最長棱的長度是_16已知是定義在上的奇函數(shù),當(dāng)時,則不等式的解集用區(qū)間表示為_三、解答題:共
5、70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù), 對于符合題意的任意,當(dāng) 時均有?若存在,求出所有的值;若不存在,請說明理由18(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù))(1)求實數(shù)的值;(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍19(12分)已知等差數(shù)列an,和等比數(shù)列bn滿足:a1=b1=1,bnN*,a2+a4+a9=3b3,3ab3=b5-30.(I)求數(shù)列an和bn的通項公式;(II)求數(shù)列n2anan+1的前n項和Sn.20(12分)在中,角,的對邊分別為, 且的面積為.(
6、1)求;(2)求的周長 .21(12分)如圖, 在四棱錐中, 底面, , ,點為棱的中點.(1)證明:(2)求直線與平面所成角的正弦值;(3)若為棱上一點, 滿足, 求二面角的余弦值.22(10分)設(shè)函數(shù),()求曲線在點(1,0)處的切線方程;()求函數(shù)在區(qū)間上的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項.【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點睛】本題考查了獨立性檢驗的應(yīng)用問題,屬于基礎(chǔ)題.2C【解析】根據(jù)雙曲線
7、方程求出漸近線方程:,再將點代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:, 連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.3D【解析】設(shè)出的坐標(biāo)為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè) ,則, 為點的軌跡方程點的參數(shù)方程為(為參數(shù)) 則由向量的坐標(biāo)表達(dá)式有:又故選:D【點睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方
8、法有:直接法;定義法;相關(guān)點法;參數(shù)法;待定系數(shù)法4B【解析】試題分析:對于選項A,而,所以,但不能確定的正負(fù),所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負(fù)數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進(jìn)行比較;若底數(shù)不同,可考慮利用中間量進(jìn)行比較.5A【解析】首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值【詳解】解:作出實數(shù),滿足不等式組表示的
9、平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以故選:A【點睛】本題考查了簡單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題6C【解析】所對應(yīng)的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復(fù)平面的概念,屬于簡單題.7C【解析】根據(jù)該廠每年產(chǎn)量未知可判斷A、B、D選項的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項的正誤.綜合可得出結(jié)論.【詳解】由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是
10、最大的,則三年累計下來產(chǎn)量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.8D【解析】由不等式的性質(zhì)及換底公式即可得解.【詳解】解:因為,則,且,所以,又,即,則,即,故選:D.【點睛】本題考查了不等式的性質(zhì)及換底公式,屬基礎(chǔ)題.9D【解析】A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確; B
11、項,如圖:當(dāng)M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當(dāng)M、N分別在BB1、CC1上運動時,A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若DMN為直角三角形,則必是以MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質(zhì)的
12、應(yīng)用,是中檔題.10A【解析】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1再由球與圓柱體積公式求解【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1則幾何體的體積為故選:【點睛】本題主要考查由三視圖求面積、體積,關(guān)鍵是由三視圖還原原幾何體,意在考查學(xué)生對這些知識的理解掌握水平11B【解析】由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程【詳解】由拋物線y22px(p0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,所以
13、拋物線的標(biāo)準(zhǔn)方程為:y22x故選B【點睛】本題考查了拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題12C【解析】將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,因為函數(shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為故選C二、填空題:本題共4小題,每小題5分,共20分。132 2 【解析】設(shè)雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【詳解】設(shè)雙曲線的右焦點為.周長為:.當(dāng)共線時等號成立,故,即實軸長為,.故答案為:;.【點睛】本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.14【解析】將四面體補(bǔ)充為長寬高分別為的長方體,體對角線即為外接球的直徑,
14、從而得解.【詳解】采用補(bǔ)體法,由空間點坐標(biāo)可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補(bǔ)體法,通過補(bǔ)體得到長方體的外接球從而得解,屬于基礎(chǔ)題.15 【解析】由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,側(cè)棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,側(cè)棱底面,則該幾何體的體積為,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視
15、圖求體積、棱長,關(guān)鍵是由三視圖還原原幾何體,是中檔題16【解析】設(shè) ,則 ,由題意可得 故當(dāng) 時, 由不等式 ,可得 ,或 求得 ,或 故答案為( 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1);(2).【解析】(1)對求導(dǎo),對參數(shù)進(jìn)行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉(zhuǎn)化不等式得,令,化簡得,因此 ,最后根據(jù)導(dǎo)數(shù)研究對應(yīng)函數(shù)單調(diào)性,確定對應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當(dāng)時,對恒成立,與題意不符,當(dāng),時,即函數(shù)在單調(diào)遞增,在單調(diào)遞減,和時均有,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,且,故,
16、又,令,則,且恒成立,令,而,時,時,令,若,則時,即函數(shù)在單調(diào)遞減,與不符;若,則時,即函數(shù)在單調(diào)遞減,與式不符;若,解得,此時恒成立,即函數(shù)在單調(diào)遞增,又,時,;時,符合式,綜上,存在唯一實數(shù)符合題意.【點睛】利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.18(1);(2).【解析】試題分析:(1)先求導(dǎo),然后利用導(dǎo)數(shù)等于求出切點的橫坐標(biāo),代入兩個曲線的方程,解方程組,可求得;(2)設(shè)與交點的橫坐標(biāo)為,利用導(dǎo)數(shù)求得,從而,然后利用求得的取值范
17、圍為.試題解析:(1)對求導(dǎo)得 設(shè)直線與曲線切于點,則,解得,所以的值為1 (2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導(dǎo)得 當(dāng)時,恒成立 當(dāng)時,從而 在上恒成立,故在上單調(diào)遞減,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點存在性定理及其單調(diào)性知唯一的,使;,從而, 由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立當(dāng)時,在上恒成立,即在上恒成立,記,則,當(dāng)變化時,變化情況列表如下:30極小值,故“在上恒成立”只需,即當(dāng)時,當(dāng)時,在上恒成立,綜合知,當(dāng)時,函數(shù)為增函數(shù)故實數(shù)的取值范圍是 考點:函數(shù)導(dǎo)數(shù)與不等式.【方法點晴】函數(shù)導(dǎo)數(shù)問題中,和切線有關(guān)的題目非常多,我們只要把握住關(guān)鍵點:一個是切點,一個是斜
18、率,切點即在原來函數(shù)圖象上,也在切線上;斜率就是導(dǎo)數(shù)的值.根據(jù)這兩點,列方程組,就能解決.本題第二問我們采用分層推進(jìn)的策略,先求得的表達(dá)式,然后再求得的表達(dá)式,我們就可以利用導(dǎo)數(shù)這個工具來求的取值范圍了.19 (I) an=2n-1,bn=3n-1;(II)n2+n22n+1【解析】(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II) n2anan+1=14+1812n-1-12n+1,利用裂項相消法計算得到答案.【詳解】(I) a1=b1=1,a2+a4+a9=3b3,3ab3=b5-30,故3+12d=3q231+q2-1d=q4-30,解得d=2q=3,故an=2n-1,b
19、n=3n-1.(II)n2anan+1=n22n-12n+1=n24n2-1=14+1412n-12n+1=14+1812n-1-12n+1,故Sn=n4+181-12n+1=n2+n22n+1.【點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.20(1)(2)【解析】(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2),所以,又,且 ,的周長為【點睛】本題考查正弦定理以及余弦定理的應(yīng)用,三角形的面積公式,也考查計算能力,屬于基礎(chǔ)題.21(1)證明見解析 (2) (3)【解析】(1)根據(jù)題意以為坐標(biāo)原點,建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并表示出,由空間向量數(shù)量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運輸服務(wù)合同(2篇)
- 少先隊課件模板
- 推敲課件蘇教版
- 古詩詞誦讀《燕歌行并序》-高二語文大單元教學(xué)同步備課(統(tǒng)編版選擇性必修中冊)
- 第14課 《背影》-八年級語文上冊同步備課精講(統(tǒng)編版)
- 螞蟻 故事 課件
- 西南林業(yè)大學(xué)《比較文學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《建筑信息模型》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《機(jī)械原理》2022-2023學(xué)年第一學(xué)期期末試卷
- 溫度變化對化學(xué)平衡的移動影響
- 安全生產(chǎn)治本攻堅三年行動方案(一般工貿(mào)) 2024
- 《中國心力衰竭診斷和治療指南2024》解讀(總)
- 家長會課件:小學(xué)五年級期中家長會
- VTE評估及護(hù)理預(yù)防
- 游戲開發(fā)職業(yè)生涯規(guī)劃
- 七年級數(shù)學(xué)上冊 期中考試卷(滬科安徽版)
- 比賽對陣表模板
- 2023年國家電投校園招聘筆試題庫及答案解析
- 法國小說家儒勒凡爾納所著《海底兩萬里》名著導(dǎo)讀賞析課件教育培訓(xùn)通用PPT
- 第二講口譯記憶1.ppt
- 企業(yè)職工基本養(yǎng)老保險退休(職)申請表
評論
0/150
提交評論