




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Chapter 8 the discrete Fourier transform8.1 represenion of periodic sequen:the discrete Fourier seriesthe Fourier transform of periodic signalsproperties of the discrete Fourier series8.4 Fourier represenion of finite-duration sequen:Definition of the discreteFourier transformsampling the Fourier tr
2、ansform (poproperties of the Fourier transformof sampling)8.7 linear convolution using the discrete Fourier transform8.8 the discrete cosine transform(DCT)18.1 represenion of periodic sequen:the discrete Fourier series(離散級數(shù))xn:periodic sequence ,Nx% r % n nfor xanyeger values of n and rX k : Fourier
3、 series 1N 1 knx n XkWN(1 n),.Nk 0N 1 Xk xnknW(2 k), ,.Nn0Wknj e 2 kn/N NNotet the sequence X kis periodic with period N:N 1Xk rN x kn(rN W)nXk2Nn 0證明二者互逆見課堂筆記Period N=10Figure 8.14sin( k / 2 )sin( k / 10 )X k n 0e j 4 kkn10/ 10W5EXAMPLE.相位X表示:幅度為零,相位不確定Figure 8.26時域離散化導(dǎo)致頻域周期化時域周期化導(dǎo)致頻域離散化8.2 the Fou
4、rier transform of periodic signalsthe Fourier transform ofx%nis defined as2 2 N 1 22kNX kN0ke ) jk (X (X)NNotherk 0DFS是計算周期信號頻譜段7時域離散化導(dǎo)致頻域周期化時域周期化導(dǎo)致頻域離散化證明見課堂筆記relationship betn the Fourier series coefficientsand the Fourier transform.FIGURE 8.5不看曲線98.3 properties of the discrete Fourier seriesAme:
5、xDFS DFS DFS n Xxk,1n X1xk, 2 n X2klinea1rit.y:ax n a DFS kn X k12Xbx1b 2N=4,作12點DFS兩個序列周期不同N=6,作12點DFS均當成周期12序列N=12,作12點DFS證明見課堂筆記11asequence: xn m DFSW km k2.shiftofXNnl DFS Wxnk l XNn DFSNx k 3.duality: X14證明見課堂筆記4. Symmetry properties(對稱性質(zhì))x *n DFSDFS * *X k ,x nXk Re xn 1 (xn x * n) DFS 1 ( k X
6、 k ) X e k *X2122DFS12jImxn (xn x n)( X k X k ) Xo k *DFS1212x n (xn x n)( X k X k ) Re X k *ex n 1 (xn x *n) DFS 1 ( k *k ) j Im k XXXo22175. For a real sequence:xn x*nX k X *k X *N k Re k Re k XXIm k Im k XXk | Xk | X X k N)點取樣,可用時域補零求大點數(shù)的DFT的方法。38Discuss teral situation:If the length of sequence
7、is N (can be infinite),and the sampling number in frequencyis M (can be greatern, equal to or lessn N),then the reconstructed signals are periodic with period M (may beoverlap).t is , ifX (e) k x nW, M0k ,1. M1j| 2knM nThen the IDFT is:xn(x nrM M)Rn r40證明見課堂筆記結(jié)論:當頻域取樣點數(shù)M序列長度N時,重構(gòu)的時域信號是原始信號的有混迭的周期性延拓
8、并取主周期。反之,若想用DFT求解FT的M(MN,xn補零到M點,再用M點DFTMN,xn以M為周期延拓混迭,取長M的主周期,再用M點DFT頻域采樣能否恢復(fù)原始信號的時域頻域采樣定理:頻域取樣點數(shù)大于等于信號長度的可以重構(gòu)時域,反之則不能。頻譜相等,則頻譜取樣相等;反之不成立。頻譜線性相位,則頻譜取樣線性相位;反之不成立。488.6 properties of the Fourier transformAxme:n DFT ,DFTDFTX Xk x nXkx,nk11221. linearityDFT n axbxaXnk bXk12122. circular shift (循環(huán)或圓周移位)
9、of a sequenceDFTkmm )x( n R nWX kNNNlnDFT l N)W xn X( kRNkN49Definition of circular shift of a sequencex1n x(n m) N RN n x(n ( N m) N RN n圖示循環(huán)移位Figure 8.1250EXAMPLE.|Hk|s D|FTHk|8po12(8.42)h1nh2njejes DFT |H()|H()1| 024 po21EXAMPLE.3. Duality(對偶性)X n DFT Nx(k )R k NxN k NNxn n cos(0.2n)| X k | DFTxn
10、 |DFTX n52EXAMPLE.X (k ) N RN k X ( N k ) N RN k X N k 近似寫法X k X k 544. Symmetry properties:x*n DFT X *(k)R k X *(N k)R k X *N kNNNNRn x*N n DFT X *k x*(n)NNRexn 1 (xn x *n) DFT 1 ( X k X *N k ) Xk ep22j Imxn 1 (xn x *n) DFT 1 ( X k X *N k ) Xk op22xn 1 (xn x *N n) DFT 1 ( X k X *k ) ReX k ep22xn 1
11、(xn x *N n) DFT 1 ( X k X *k ) j ImX k op2255Here, we define:X epk : the perioonjugate-symmetric components(圓周共軛對稱分量)X opk : the perioonjugate-antisymmetric components(圓周共軛稱分量)Any finiength sequence can beed as:X k X epkop X k where,X Xk(k 1 X*Nk) *XN kep2epX Xk(k 1 X*N k)*XN kop2opThe length of the
12、 three sequenare all N.565. for a real sequence:X k X *N k xn x *nReX k ReX N k ImX k ImX N k | X k | X N k | X k =N1+N2-1,then xn*hn=xn(N)hn74EXAMPLE.Figure 8.18線性卷積線性卷積右移線性卷積6點循環(huán)卷積=線性卷積混迭加12點循環(huán)卷積=線性卷75pNpNbNc:calculate N pocircular convolution by linear convolution(a) y n xn*h nb(x)nN(h )n ynN rNR
13、 n rcalculainear convolution by circular convolutionaddinga () zxero nandhn toleng1th21ofb(x)nh n xn (N)hncalculainear convolution by DFTadding a () zexro nandhn toleng1th 21 ofTofxn andhnx(n) N (h) n IDFTXkHkx n *hnx n (N )hn76.(exercise 8.15)x1n x2n x1n(4)x2n77EXAMPLE.實際應(yīng)用中常用FIR對無限長或不定長序列濾波impleme
14、ntinglinear time-invariant FIR systems using the DFTFigure 8.22需要實時處理(即邊輸入邊處理,并且速度快)??刹捎靡韵聝煞N方法。也可用時域直接實現(xiàn)(速度較慢)7。9overlap-add methodhn length is P=P 的段,斷間相連(2)分別對 h(n)點FFT和本段的x(n)補零作L+P-1y(n) IFFTH (k) X (k),n 0,.L P 2求取y(n)的n=0P-2點與前段yn的后P-1點相加,n=0L-1點作為該段的輸出81overlap-save method線性卷積結(jié)果hn length is P
15、=L最前P-1 點與前段相同L點的循環(huán)卷積是線性卷積以L為周期延拓,能保證中間L-P+1點沒有混迭,可作為當前段的輸出Figure 8.2482步驟:hn長度為P(1)將x (P-1點n分)成長度為L的段,斷間(2)分別對h (n)和本段的x (n補)k零作L點DFTIFFT),X k0 y((n3)) 求(4)取y () H(n,.L1n)中的L-P+1點作為該段的輸出n=P-1,.L-1如果L+P-1點DFT,則將結(jié)果的前后各P-1點去除,輸出中間L-P+1點,浪費。保證輸出的L-P+1是線性卷積結(jié)果的最小DFT點數(shù)是L,不是L+P-1。83總結(jié)DFT的用途:計算信號的頻譜的取樣計算系統(tǒng)的
16、頻響的取樣(FIR和IIR)FIR系統(tǒng)的頻域?qū)崿F(xiàn)848.8 the discrete cosine transform(DCT)N 1kn2DCT 1:X k ),0 k N 1cc xncos(knN 1N 1n0N 1kn2xn ),0 n N 1cc X kcos(nkN1N1n0N 1k (2n 1)2NDCT 2:X k ),0 k N 1cxncos(k2Nn0N 1k (2n 1)n02Nxn ),0 n N 1c X k cos(k2N85N 1n(2k 1)2NDCT 3:X k ),0 k N 1c xncos(n2Nn0N 1n(2k 1)2Nxn ),0 n N 1cX
17、 k cos(k2Nn0N 1 (2n 1)(2k 1)2NDCT 4:X k ),0 k N 1xncos(4Nn0N 1 (2n 1)(2k 1)n02Nxn ),0 n N 1X k cos(4N1/ 2, k 0ck 1,1 k N 186對信號作對稱延拓和周期延拓,作DFS再取主周期得到DCT。DCT-1-2 1. 0. 1. 2. 3.4. 5DCT-2-4 3 -2-10. 1. 2. 3. 4. 5. 6. 787延拓后序列的2N點DFT與原序列的 N點DCT的關(guān)系DCT 2xn, n 0,.N 1yn X 2N 1 n, n N ,.2N 12N 1N 12N 1n NknknknYk ynWxnW 1 nWx2N2 N2N2Nn0n0N 1N 1k (2N 1n)knxnWxnW2N2 Nn0n0 xncos(2n 1)k )N 1 2W k / 22N2Nn02 c 2W k / 2 X k /()2NkN89Comparewith DFT
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 出口寵物食品合同范本
- 倉庫租賃 配送合同范本
- 主力商家合同范本
- 2025年超大型特厚板軋機項目建議書
- 第六課 友誼之樹常青 教學(xué)設(shè)計-2024-2025學(xué)年統(tǒng)編版道德與法治七年級上冊
- 包裝買賣合同范本
- 北京合伙合同范本咨詢
- 《認識面積》(教學(xué)設(shè)計)-2023-2024學(xué)年三年級下冊數(shù)學(xué)人教版
- 信用擔(dān)保借款合同范本你
- 制造珠寶生產(chǎn)訂單合同范本
- 2025年重慶三峽擔(dān)保集團招聘筆試參考題庫含答案解析
- 《快遞運營》課件-項目一 快遞運營認知
- 2024糖尿病酮癥酸中毒診斷和治療課件
- GA/T 765-2020人血紅蛋白檢測金標試劑條法
- 膠粘劑基礎(chǔ)知識及產(chǎn)品詳解(課堂PPT)
- 完整版三措兩案范文
- 鐵路總公司近期處理的七起突出質(zhì)量問題的通報
- 常用洪水預(yù)報模型介紹
- 援外項目鋼結(jié)構(gòu)運輸包裝作業(yè)指導(dǎo)書(共13頁)
- 髖關(guān)節(jié)置換術(shù)男性患者留置尿管最佳時機探析和對策
- [爆笑小品校園劇本7人]爆笑小品校園劇本
評論
0/150
提交評論