




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1某三棱錐的三視圖如圖所示,則該三棱錐的體積為( )AB4CD52易系辭上有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八
2、在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點為陰數(shù).若從這10個數(shù)中任取3個數(shù),則這3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的概率為( ) ABCD3數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結(jié)論:曲線有四條對稱軸;曲線上的點到原點的最大距離為;曲線第一象限上任意一點作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;四葉草面積小于.其中,所有正確結(jié)論的序號是( )ABCD4在復(fù)平面內(nèi),復(fù)數(shù)(,)對應(yīng)向量(O為坐標(biāo)原點),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:
3、,已知,則( )AB4CD165已知,則( )A5BC13D6是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是( )ABCD7設(shè)為等差數(shù)列的前項和,若,則ABCD8已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為( )ABC或D9已知數(shù)列an滿足:an=2,n5a1a2an-1-1,n6nN*.若正整數(shù)k(k5)使得a12+a22+ak2=a1a2ak成立,則k=( )A16B17C18D1910已知向量,若,則與夾角的余弦值為( )ABCD11已知三棱錐中,是等邊三角形,則三棱錐的外接球的表面積為( )ABCD12已知雙曲線(,)的左、右頂點分別為,虛軸的兩個端點分別為
4、,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為( )A8B16CD二、填空題:本題共4小題,每小題5分,共20分。13正方體中,是棱的中點,是側(cè)面上的動點,且平面,記與的軌跡構(gòu)成的平面為,使得;直線與直線所成角的正切值的取值范圍是;與平面所成銳二面角的正切值為;正方體的各個側(cè)面中,與所成的銳二面角相等的側(cè)面共四個其中正確命題的序號是_(寫出所有正確命題的序號)14設(shè)P為有公共焦點的橢圓與雙曲線的一個交點,且,橢圓的離心率為,雙曲線的離心率為,若,則_.15曲線在處的切線方程是_16在平面直角坐標(biāo)系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點若以AB為直徑的圓與
5、圓x2(y2)21相外切,且APB的大小恒為定值,則線段OP的長為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點,求實數(shù)的取值范圍.18(12分)已知拋物線E:y22px(p0),焦點F到準(zhǔn)線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1x2且x1+x21線段AB的垂直平分線與x軸交于點 C(1)求拋物線E的方程;(2)求ABC面積的最大值19(12分)已知函數(shù)與的圖象關(guān)于直線對稱. (為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求
6、正整數(shù)的最小值.20(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;(2)若點P的極坐標(biāo)為,求的值.21(12分)已知拋物線,過點的直線交拋物線于兩點,坐標(biāo)原點為,.(1)求拋物線的方程;(2)當(dāng)以為直徑的圓與軸相切時,求直線的方程.22(10分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1
7、B【解析】還原幾何體的直觀圖,可將此三棱錐放入長方體中, 利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.2C【解析】先根據(jù)組合數(shù)計算出所有的情況數(shù),再根據(jù)“3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個數(shù)中至少有2個陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析
8、;當(dāng)情況數(shù)較多時,可考慮用排列數(shù)、組合數(shù)去計算.3C【解析】利用之間的代換判斷出對稱軸的條數(shù);利用基本不等式求解出到原點的距離最大值;將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;根據(jù)滿足的不等式判斷出四葉草與對應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】:當(dāng)變?yōu)闀r, 不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;綜上可知:有四條對稱軸,故正確;:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;:設(shè)任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成
9、矩形面積的最大值為,故正確;:由可知,所以四葉草包含在圓的內(nèi)部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.4D【解析】根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】, .故選:D【點睛】本題考查了復(fù)數(shù)的新定義題目、同時考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.5C【解析】先化簡復(fù)數(shù),再求,最后求即可.【詳解】解:,故選:C【點睛】考查復(fù)數(shù)的運算,是基礎(chǔ)題.6D【解析】根據(jù)是定義在上的增函數(shù)
10、及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.7C【解析】根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C8D【解析】根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.9B【解析】由題意可得
11、a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6時,a1a2an-1=1+an,將n換為n+1,兩式相除,an2=an+1-an+1,n6,累加法求得a62+a72+ak2=ak+1-a6+k-5即有a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-16,結(jié)合條件,即可得到所求值【詳解】解:an=2,n5a1a2an-1-1,n6(nN*),即a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6時,a1a2an-1=1+an,a1a2an=1+an+1,兩式相除可得1+an+11+an=an,則an2=an+1-
12、an+1,n6,由a62=a7-a6+1,a72=a8-a7+1,ak2=ak+1-ak+1,k5,可得a62+a72+ak2=ak+1-a6+k-5a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-16,且a1a2ak=1+ak+1,正整數(shù)k(k5)時,要使得a12+a22+ak2=a1a2ak成立,則ak+1+k-16=ak+1+1,則k=17,故選:B【點睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.10B【解析】直接利用向量的坐標(biāo)運算得到向量的坐標(biāo),利用求得參數(shù)m,再用計算即可.【
13、詳解】依題意, 而, 即, 解得, 則.故選:B.【點睛】本題考查向量的坐標(biāo)運算、向量數(shù)量積的應(yīng)用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.11D【解析】根據(jù)底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進而得球的表面積.【詳解】設(shè)為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,即,解得,所以三棱
14、錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.12D【解析】根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔
15、題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】取中點,中點,中點,先利用中位線的性質(zhì)判斷點的運動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:利用等腰三角形的性質(zhì)即可判斷;直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,進而求解;由,取為中點,則,則即為與平面所成的銳二面角,進而求解;由平行的性質(zhì)及圖形判斷即可.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運動軌跡為線段,平面即為平面.取為中點,因為是等腰三角形,所以,又因為,所以,故正確;直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,當(dāng)點為中點
16、時,直線與直線所成角最小,此時,;當(dāng)點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,正確;與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,所以正確;正方體的各個側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以正確故答案為:【點睛】本題考查直線與平面的空間位置關(guān)系,考查異面直線成角,二面角,考查空間想象能力與轉(zhuǎn)化思想.14【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為15【解析】利用導(dǎo)數(shù)的運算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】求導(dǎo)得,所以,所以切線方程為故答案為:【點睛】本題考查了基本初等函數(shù)的
17、導(dǎo)數(shù)、導(dǎo)數(shù)的運算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16【解析】分析:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切且APB的大小恒為定值,即可求出線段OP的長詳解:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則APB的大小恒為定值,t,|OP|=故答案為點睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學(xué)生的計算能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1).(2)【解析】(1)利用導(dǎo)數(shù)的幾何意義求解即可;(2)利用導(dǎo)數(shù)得出的單調(diào)性以及極值
18、,從而得出的圖象,將函數(shù)的零點問題轉(zhuǎn)化為函數(shù)圖象的交點問題,由圖,即可得出實數(shù)的取值范圍.【詳解】(1)當(dāng)時,切線斜率,又切點切線方程為,即.(2),記,令得;的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當(dāng)時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的零點問題,屬于中檔題.18(1)y26x(2)【解析】(1)根據(jù)拋物線定義,寫出焦點坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點坐標(biāo)表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y22px(p0),焦點F
19、(,0)到準(zhǔn)線x的距離為3,可得p3,即有拋物線方程為y26x;(2)設(shè)線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為yy0(x2),可得x5,y0是的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由可得直線AB的方程為yy0(x2),即x(yy0)+2 代入y26x可得y22y0(yy0)+12,即y22y0y+2y020 ,由題意y1,y2是方程的兩個實根,且y1y2,所以1y021(2y0212)1y02+180,解得2y02,|AB|,又C(5,0)到線段AB的距離h|CM|,所以SABC|AB|h,當(dāng)且僅當(dāng)9+y02212y02
20、,即y0,A(,),B(,),或A(,),B(,)時等號成立,所以SABC的最大值為【點睛】此題考查根據(jù)焦點和準(zhǔn)線關(guān)系求拋物線方程,根據(jù)直線與拋物線位置關(guān)系求解三角形面積的最值,表示三角形的面積關(guān)系常涉及韋達定理整體代入,拋物線中需要考慮設(shè)點坐標(biāo)的技巧,處理最值問題常用函數(shù)單調(diào)性求解或均值不等式求最值.19(1)e;(2)2.【解析】(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對稱,所以函數(shù)的圖
21、象與互為反函數(shù),則,,設(shè)點,又,當(dāng)時,曲線在點處的切線為,即,代入點,得,即,構(gòu)造函數(shù), 當(dāng)時,當(dāng)時,且,當(dāng)時,單調(diào)遞增,而, 故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得. 所以當(dāng)時,;當(dāng)時,因此函數(shù)在是增函數(shù),在是減函數(shù). 故函數(shù)的最大值為 .令, 因為, ,又因為在是減函數(shù).所以當(dāng)時,.所以正整數(shù)的最小值為2.【點睛】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計算能力.20(1),;(2)2.【解析】(1)由得,求出曲線的直角坐標(biāo)方程.由直線的參數(shù)方程消去參數(shù),即求直線的普通方程;(2)將直線的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線的直角坐標(biāo)方程,韋達定理得,點在直線上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線的直角坐標(biāo)方程為,由直線的參數(shù)方程(t為參數(shù)),消去得,即直線的普通方程為.()點的直角坐標(biāo)為,則點在直線上.將直線的參數(shù)方程化為標(biāo)準(zhǔn)式(為參數(shù)),代入曲線的直角坐標(biāo)方程,整理得,直線與曲線交于兩點,即.設(shè)點所對應(yīng)的參數(shù)分別為,由韋達定理可得,.點在直線上,.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程和普通方程的互
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 泥土消納合同范本
- 科技與生態(tài)校園文化的創(chuàng)新融合
- 科技創(chuàng)新中的綜合素質(zhì)評價指標(biāo)體系
- 組團出行合同范本
- 科技產(chǎn)品市場經(jīng)濟的模型分析
- 2025至2030年中國液壓穿孔機數(shù)據(jù)監(jiān)測研究報告
- 社交電商的支付與金融解決方案研究
- 科技與文化融合的新趨勢及影響分析
- 2024年臨沂市蘭山區(qū)事業(yè)單位招聘綜合類崗位考試真題
- 的邏輯結(jié)構(gòu)與語言表達技巧
- 江蘇省2024-2025年跨地區(qū)職業(yè)學(xué)校職教高考一輪聯(lián)考(機械專業(yè)綜合理論試卷含答案)
- 2024年事業(yè)單位租車服務(wù)滿意度調(diào)查及改進協(xié)議3篇
- 露天礦邊坡穩(wěn)定課件所有章節(jié)整合
- 運用PDCA提高吞咽障礙患者護理措施落實率
- 《法學(xué)概論》課程教學(xué)大綱
- JGJ-T188-2009施工現(xiàn)場臨時建筑物技術(shù)規(guī)范
- 教師資格考試高級中學(xué)美術(shù)學(xué)科知識與教學(xué)能力試題與參考答案(2024年)
- 機電設(shè)備安裝與調(diào)試技術(shù)教案
- TGDCMA 022-2024 信用園區(qū)評價規(guī)范
- 安徽法院聘用制書記員招聘真題
- 《2023版CSCO鼻咽癌診療指南》解讀課件
評論
0/150
提交評論