北京市昌平區(qū)臨川育人學(xué)校2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
北京市昌平區(qū)臨川育人學(xué)校2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
北京市昌平區(qū)臨川育人學(xué)校2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
北京市昌平區(qū)臨川育人學(xué)校2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
北京市昌平區(qū)臨川育人學(xué)校2022年高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是( )ABCD2函數(shù)()的圖像可以是( )ABC

2、D3已知數(shù)列,是首項為8,公比為得等比數(shù)列,則等于( )A64B32C2D44函數(shù)的圖象大致是()ABCD5已知,滿足條件(為常數(shù)),若目標函數(shù)的最大值為9,則( )ABCD6執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是( ). ABCD7生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )ABCD8已知函數(shù)是定義域為的偶函數(shù),且滿足,當時

3、,則函數(shù)在區(qū)間上零點的個數(shù)為( )A9B10C18D209是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是( )ABCD10下列四個結(jié)論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則 (3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A1B2C3D411已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為( )ABCD12在直三棱柱中,己知,則異面直線與所成的角為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13設(shè)實數(shù)x,y滿足,則點表示的區(qū)

4、域面積為_.14在一次體育水平測試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結(jié)論:甲校學(xué)生成績的優(yōu)秀率大于乙校學(xué)生成績的優(yōu)秀率;甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號是_.15滿足線性的約束條件的目標函數(shù)的最大值為_16給出以下式子:tan25+tan35tan25tan35;2(sin35cos25+cos35cos65);其中,結(jié)果為

5、的式子的序號是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù)(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍18(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.19(12分)在平面直角坐標系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標.20(12分)2019年是

6、中華人民共和國成立70周年為了讓人民了解建國70周年的風(fēng)雨歷程,某地的民調(diào)機構(gòu)隨機選取了該地的100名市民進行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖(1)現(xiàn)從年齡在,內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機選取3人進行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調(diào)查,其中有名市民的年齡在的概率為當最大時,求的值21(12分)設(shè),函數(shù),其中為自然對數(shù)的底數(shù).(1)設(shè)函數(shù).若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;求證:對任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值

7、,若存在,求出的取值范圍;若不存在,請說明理由.22(10分)已知.()當時,解不等式;()若的最小值為1,求的最小值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設(shè)兩圓內(nèi)公切線為與,由圖可知,設(shè)兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),可得,化為,即,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形

8、結(jié)合思想的應(yīng)用,屬于綜合題. 數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關(guān)鍵是運用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.2B【解析】根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當時,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.3A【解析

9、】根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,故,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學(xué)生的計算能力.4C【解析】根據(jù)函數(shù)奇偶性可排除AB選項;結(jié)合特殊值,即可排除D選項.【詳解】,函數(shù)為奇函數(shù),排除選項A,B;又當時,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.5B【解析】由目標函數(shù)的最大值為9,我們可以畫出滿足條件 件為常數(shù))的可行域,根據(jù)目標函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標函數(shù)的最大值為9,可得直線與直線

10、的交點,使目標函數(shù)取得最大值,將,代入得:故選:【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值6C【解析】框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時,退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時滿足輸出結(jié)果,故.故選:C.【點睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.7C【解析】分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件

11、個數(shù),不考慮限制因素,總數(shù)有種,進而得到結(jié)果.【詳解】當“數(shù)”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有 當“數(shù)”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為: 故答案為:C.【點睛】解排列組合問題要遵循兩個原則:按元素(或位置)的性質(zhì)進行分類;按事情發(fā)生的過程進行分步具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)8B【解析】由已知可得函數(shù)f(x)的周期與對稱軸,函

12、數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)f (2x),得函數(shù)f(x)圖象關(guān)于x1對稱,f(x)為偶函數(shù),取xx+2,可得f(x+2)f(x)f(x),得函數(shù)周期為2.又當x0,1時,f(x)x,且f(x)為偶函數(shù),當x1,0時,f(x)x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題

13、考查函數(shù)的零點與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.9D【解析】根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.10C【解析】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方

14、程的性質(zhì)和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對稱軸的方程為,所以 是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件【點睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等

15、知識點的應(yīng)用,逐項判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題11A【解析】設(shè)橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得: ,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的長半軸長為 ,由橢圓和雙曲線的定義得: ,解得,設(shè),在中,由余弦定理得: , 化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.12C【解析】由條件可看出,則為異面直線與所成的角,可證得三角形中,解得從而得出異面直線與所成的角【詳解】連接,如圖:又,則為異面直線與所成的角.因為且三棱柱

16、為直三棱柱,面,又,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.14【解析】根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校

17、所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系,故正確.故答案為:.【點睛】本題考查局部頻率和整體頻率的關(guān)系,意在考查學(xué)生的理解能力和應(yīng)用能力.151【解析】作出不等式組表示的平面區(qū)域,將直線進行平移,利用的幾何意義,可求出目標函數(shù)的最大值?!驹斀狻坑?,得,作出可行域,如圖所示:平移直線,由圖像知,當直線經(jīng)過點時,截距最小,此時取得最大值。由 ,解得 ,代入直線,得。【點睛】本題主要考查簡單的線性規(guī)劃問題的解法平移法。16【解析】由已知分別結(jié)合和差角的正切及正弦余弦公式進行

18、化簡即可求解.【詳解】tan60tan(25+35),tan25+tan35tan25tan35;tan25tan35,2(sin35cos25+cos35cos65)2(sin35cos25+cos35sin25),2sin60;tan(45+15)tan60;故答案為:【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)【解析】(1) 代入可得對分類討論即可得不等式的解集; (2)根據(jù)不等式在上恒成立去絕對值化簡可得再去絕對值即可得關(guān)于 的不等式組解不等式組即可求得的取值范圍【詳解】(

19、1)當時,不等式可化為,當時,不等式為,解得;當時,不等式為,無解;當時,不等式為,解得,綜上,原不等式的解集為(2)因為的解集包含于,則不等式可化為,即解得,由題意知,解得,所以實數(shù)a的取值范圍是【點睛】本題考查了絕對值不等式的解法分類討論解絕對值不等式的應(yīng)用,含參數(shù)不等式的解法.難度一般.18(1)(2)【解析】(1)先分別表示出,然后根據(jù)求解出的值,則的標準方程可求;(2)設(shè)出直線的方程并聯(lián)立拋物線方程得到韋達定理形式,然后根據(jù)距離公式表示出并代入韋達定理形式,由此判斷出為定值時的坐標.【詳解】(1)由題意可得,焦點,則,解得.拋物線的標準方程為(2)設(shè),設(shè)點,顯然直線的斜率不為0.設(shè)直

20、線的方程為聯(lián)立方程,整理可得,要使為定值,必有,解得,為定值時,點的坐標為【點睛】本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對應(yīng)的定值問題,聯(lián)立直線方程借助韋達定理形式是常用方法;(2)直線與圓錐曲線的問題中,直線方程的設(shè)法有時能很大程度上起到簡化運算的作用。19(1)(2)(2,)【解析】(1)利用極坐標和直角坐標的轉(zhuǎn)化公式求解.(2)先把兩個方程均化為普通方程,求解公共點的直角坐標,然后化為極坐標即可.【詳解】(1)曲線C的極坐標方程為,則,即.(2),聯(lián)立可得,(舍)或,公共點(,3),化為極坐標(2,)【點睛】本題主要考查極坐標和直角坐標的轉(zhuǎn)化

21、及交點的求解,熟記極坐標和直角坐標的轉(zhuǎn)化公式是求解的關(guān)鍵,交點問題一般是統(tǒng)一一種坐標形式求解后再進行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).20(1)分布列見解析,(1)【解析】(1)根據(jù)頻率分布直方圖及抽取總?cè)藬?shù),結(jié)合各組頻率值即可求得各組抽取的人數(shù);的可能取值為0,1,1,由離散型隨機變量概率求法即可求得各概率值,即可得分布列;由數(shù)學(xué)期望公式即可求得其數(shù)學(xué)期望.(1)先求得年齡在內(nèi)的頻率,視為概率.結(jié)合二項分布的性質(zhì),表示出,令,化簡后可證明其單調(diào)性及取得最大值時的值【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數(shù)為人,年齡在內(nèi)的人數(shù)為人年齡在內(nèi)的人數(shù)為人所以的可能取值為0,1,1所以,所以的分市列為011 (1)設(shè)在抽取的10名市民中,年齡在內(nèi)的人數(shù)為,服從二項分布由頻率分布直方圖可知,年齡在內(nèi)的頻率為,所以,所以設(shè),若,則,;若,則,所以當時,最大,即當最大時,【點睛】本題考差了離散型隨機變量分布列及數(shù)學(xué)期望的求法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論