![北京市西城區(qū)第四十四2021-2022學(xué)年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view/1a81386c8b7c8c7bff80349621b71986/1a81386c8b7c8c7bff80349621b719861.gif)
![北京市西城區(qū)第四十四2021-2022學(xué)年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view/1a81386c8b7c8c7bff80349621b71986/1a81386c8b7c8c7bff80349621b719862.gif)
![北京市西城區(qū)第四十四2021-2022學(xué)年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view/1a81386c8b7c8c7bff80349621b71986/1a81386c8b7c8c7bff80349621b719863.gif)
![北京市西城區(qū)第四十四2021-2022學(xué)年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view/1a81386c8b7c8c7bff80349621b71986/1a81386c8b7c8c7bff80349621b719864.gif)
![北京市西城區(qū)第四十四2021-2022學(xué)年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view/1a81386c8b7c8c7bff80349621b71986/1a81386c8b7c8c7bff80349621b719865.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1甲乙兩人有三個(gè)不同的學(xué)習(xí)小組, , 可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為( )A B C D2不等式的解集記為,有下面四個(gè)命題:;.其中的真命題是( )ABCD3已知正四面體的內(nèi)切球體積為v,外
2、接球的體積為V,則( )A4B8C9D274關(guān)于函數(shù),有下述三個(gè)結(jié)論:函數(shù)的一個(gè)周期為;函數(shù)在上單調(diào)遞增;函數(shù)的值域?yàn)?其中所有正確結(jié)論的編號(hào)是( )ABCD5若的二項(xiàng)展開(kāi)式中的系數(shù)是40,則正整數(shù)的值為( )A4B5C6D76給出下列三個(gè)命題:“”的否定;在中,“”是“”的充要條件;將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象其中假命題的個(gè)數(shù)是( )A0B1C2D37已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為( )A9B10C18D208若,則, , , 的大小關(guān)系為( )ABCD9已知直線是曲線的切線,則( )A或1B或2C或D或110音樂(lè),是用聲音來(lái)展現(xiàn)美,給
3、人以聽(tīng)覺(jué)上的享受,熔鑄人們的美學(xué)趣味著名數(shù)學(xué)家傅立葉研究了樂(lè)聲的本質(zhì),他證明了所有的樂(lè)聲都能用數(shù)學(xué)表達(dá)式來(lái)描述,它們是一些形如的簡(jiǎn)單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音由樂(lè)聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波下列函數(shù)中不能與函數(shù)構(gòu)成樂(lè)音的是( )ABCD11在天文學(xué)中,天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽(yáng)的星等是26.7,天狼星的星等是1.45,則太陽(yáng)與天狼星的亮度的比值為( )A1010.1B10.1Clg10.1D1010.112我國(guó)古代數(shù)學(xué)著作九章算術(shù)有
4、如下問(wèn)題:“今有蒲生一日,長(zhǎng)三尺莞生一日,長(zhǎng)一尺蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)倍?”意思是:“今有蒲草第天長(zhǎng)高尺,蕪草第天長(zhǎng)高尺以后,蒲草每天長(zhǎng)高前一天的一半,蕪草每天長(zhǎng)高前一天的倍.問(wèn)第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長(zhǎng)所需要的天數(shù)是( )(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)ABCD二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)的極大值為_(kāi).14已知四棱錐,底面四邊形為正方形,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_(kāi)15在中,角、所對(duì)的邊分別為、,若,則的取值范圍是_16二項(xiàng)式的展開(kāi)式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開(kāi)式中的常
5、數(shù)項(xiàng)為_(kāi).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.18(12分)如圖所示,已知平面,為等邊三角形,為邊上的中點(diǎn),且.()求證:面;()求證:平面平面;()求該幾何體的體積19(12分)如圖,在中,角的對(duì)邊分別為,且滿足,線段的中點(diǎn)為.()求角的大??;()已知,求的大小.20(12分)在以ABCDEF為
6、頂點(diǎn)的五面體中,底面ABCD為菱形,ABC120,ABAEED2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD平面ABCD.(1)證明:BDEG;(2)若三棱錐,求菱形ABCD的邊長(zhǎng).21(12分)如圖,已知拋物線:與圓: ()相交于, , ,四個(gè)點(diǎn),(1)求的取值范圍;(2)設(shè)四邊形的面積為,當(dāng)最大時(shí),求直線與直線的交點(diǎn)的坐標(biāo).22(10分)已知拋物線,焦點(diǎn)為,直線交拋物線于兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),如圖所示,當(dāng)直線經(jīng)過(guò)焦點(diǎn)時(shí),點(diǎn)恰好是的中點(diǎn),且.(1)求拋物線的方程;(2)點(diǎn)是原點(diǎn),設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時(shí),有數(shù)列滿足,設(shè)數(shù)列的前n項(xiàng)和為,已知存在正整數(shù)使得,求m的值.參考答案
7、一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.2A【解析】作出不等式組表示的可行域,然后對(duì)四個(gè)選項(xiàng)一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時(shí),即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點(diǎn)睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.3D【解析】設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,
8、利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長(zhǎng)為,取的中點(diǎn)為,連接,作正四面體的高為,則,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,在中,由勾股定理得:,解得, 故選:D【點(diǎn)睛】本題主要考查了多面體的內(nèi)切球、外接球問(wèn)題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.4C【解析】用周期函數(shù)的定義驗(yàn)證.當(dāng)時(shí),再利用單調(diào)性判斷.根據(jù)平移變換,函數(shù)的值域等價(jià)于函數(shù)的值域,而,當(dāng)時(shí),再求值域.【詳解】因?yàn)?,故錯(cuò)誤;當(dāng)時(shí),所以,所以在上單調(diào)遞增,故正確;函數(shù)的值域等價(jià)于函數(shù)的值域,易知,故當(dāng)時(shí),故正確.故選:C.【點(diǎn)睛】本題考查三
9、角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.5B【解析】先化簡(jiǎn)的二項(xiàng)展開(kāi)式中第項(xiàng),然后直接求解即可【詳解】的二項(xiàng)展開(kāi)式中第項(xiàng).令,則,(舍)或.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式問(wèn)題,屬于基礎(chǔ)題6C【解析】結(jié)合不等式、三角函數(shù)的性質(zhì),對(duì)三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【詳解】對(duì)于命題,因?yàn)?所以“”是真命題,故其否定是假命題,即是假命題;對(duì)于命題,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,即,即可得到,即充分性成立;必要性:中,若,結(jié)合余弦函數(shù)的單調(diào)性可知,即,可得到,即必要性成立.故命題正確;對(duì)于命題,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得到的圖象,即命題是假命題故假命
10、題有.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.7B【解析】由已知可得函數(shù)f(x)的周期與對(duì)稱軸,函數(shù)F(x)f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)f (2x),得函數(shù)f(x)圖象關(guān)于x1對(duì)稱,f(x)為偶函數(shù),取xx+2,可得f(x+2)f(x)f(x),得函數(shù)周期為2.又當(dāng)x0,1時(shí),f(x)x,且
11、f(x)為偶函數(shù),當(dāng)x1,0時(shí),f(x)x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.8D【解析】因?yàn)?,所以,因?yàn)?,所?.綜上;故選D.9D【解析】求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點(diǎn)坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對(duì)于,令,解得,故切點(diǎn)為,代入直線方程得,解得或1.故選:D【點(diǎn)睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.10C【解析】由基本音的諧波的定義可得,利用可
12、得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.11A【解析】由題意得到關(guān)于的等式,結(jié)合對(duì)數(shù)的運(yùn)算法則可得亮度的比值.【詳解】?jī)深w星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問(wèn)題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)信息處理能力閱讀理解能力以及指數(shù)對(duì)數(shù)運(yùn)算.12C【解析】由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長(zhǎng)度,進(jìn)而可得:,解出即可得出【詳解】由題意可得莞草與蒲草第n天的長(zhǎng)度分別為 據(jù)題意得:, 解得2n12, n21故選:C【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)
13、公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當(dāng)時(shí),;當(dāng)時(shí),.所以當(dāng)時(shí),函數(shù)有極大值.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),考查運(yùn)算求解能力以及化歸轉(zhuǎn)化思想,屬基礎(chǔ)題.14【解析】由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進(jìn)而表示出內(nèi)切球的半徑,并求出半徑的最大值,進(jìn)而求出球的體積的最大值.【詳解】設(shè),由球O內(nèi)切于四棱錐可知,則,
14、球O的半徑,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,此時(shí).故答案為:.【點(diǎn)睛】本題考查了棱錐的體積問(wèn)題,內(nèi)切球問(wèn)題,考查空間想象能力,屬于較難的填空壓軸題.15【解析】計(jì)算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,由正弦定理,.因此,的取值范圍是.故答案為:.【點(diǎn)睛】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題16【解析】由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開(kāi)式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng)【詳解】由題意,展開(kāi)式通項(xiàng)為,由得,常數(shù)項(xiàng)為故答案為:【點(diǎn)睛】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開(kāi)式通項(xiàng)公式是解題關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字
15、說(shuō)明、證明過(guò)程或演算步驟。17(1)(2)(3)直線平面,證明見(jiàn)解析【解析】取中點(diǎn),連接,則,再由已知證明平面,以為坐標(biāo)原點(diǎn),分別以,所在直線為,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個(gè)法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標(biāo),由,結(jié)合平面,可得直線平面【詳解】底面是邊長(zhǎng)為2的菱形,為等邊三角形取中點(diǎn),連接,則,為等邊三角形,又平面平面,且平面平面,平面以為坐標(biāo)原點(diǎn),分別以,所在直線為,軸建立空間直角坐標(biāo)系則,1,0,0,設(shè)平面的一個(gè)法向量為由,取,得(1)證明:設(shè)直線與平
16、面所成角為,則,即直線與平面所成角的正弦值為;(2)設(shè)平面的一個(gè)法向量為,由,得二面角的余弦值為;(3),又平面,直線平面【點(diǎn)睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理能力與計(jì)算能力,屬于中檔題18()見(jiàn)解析; ()見(jiàn)解析; ().【解析】(I)取的中點(diǎn),連接,通過(guò)證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點(diǎn),易得面,利用棱錐的體積公式,計(jì)算出棱錐的體積.【詳解】()取的中點(diǎn),連接,則,故四邊形為平行四邊形.故.又面,平面,所以面.()為等邊三角形,為
17、中點(diǎn),所以.又,所以面.又,故面,所以面平面.()幾何體是四棱錐,作交于點(diǎn),即面,.【點(diǎn)睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.19();().【解析】()由正弦定理邊化角,再結(jié)合轉(zhuǎn)化即可求解;()可設(shè),由,再由余弦定理解得,對(duì)中,由余弦定理有,通過(guò)勾股定理逆定理可得,進(jìn)而得解【詳解】()由正弦定理得.而.由以上兩式得,即.由于,所以,又由于,得.()設(shè),在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【點(diǎn)睛】本題考查正弦定理和余弦定理的綜合運(yùn)用,屬于中檔題20(1)詳見(jiàn)解析;(2).【解析
18、】(1)取中點(diǎn),連,可得,結(jié)合平面EAD平面ABCD,可證平面ABCD,進(jìn)而有,再由底面是菱形可得,可得,可證得平面,即可證明結(jié)論;(2)設(shè)底面邊長(zhǎng)為,由EFAB,AB2EF,求出體積,建立的方程,即可求出結(jié)論.【詳解】(1)取中點(diǎn),連,底面ABCD為菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,為中點(diǎn),平面,平面平面,;(2)設(shè)菱形ABCD的邊長(zhǎng)為,則,所以菱形ABCD的邊長(zhǎng)為.【點(diǎn)睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關(guān)系之間的相互轉(zhuǎn)化,體積問(wèn)題要熟練應(yīng)用等體積方法,屬于中檔題.21(1)(2)點(diǎn)的坐標(biāo)為【解析】將拋物線方程與圓方程聯(lián)立,消去得到關(guān)于的一元二次方程, 拋物線與圓有四個(gè)交點(diǎn)需滿足關(guān)于的一元二次方程在上有兩個(gè)不等的實(shí)數(shù)根,根據(jù)二次函數(shù)的有關(guān)性質(zhì)即可得到關(guān)于的不等式組,解不等式即可.不妨設(shè)拋物線與圓的四個(gè)交點(diǎn)坐標(biāo)為,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點(diǎn)坐標(biāo),再根據(jù)等腰梯形的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版數(shù)學(xué)八年級(jí)下冊(cè)《章前引言及 加權(quán)平均數(shù)》聽(tīng)評(píng)課記錄1
- 人教部編版八年級(jí)道德與法治上冊(cè):7.1《關(guān)愛(ài)他人》聽(tīng)課評(píng)課記錄2
- 蘇教版小學(xué)二年級(jí)下冊(cè)數(shù)學(xué)口算題
- 七年級(jí)生物教學(xué)計(jì)劃
- 工程建設(shè)項(xiàng)目招標(biāo)代理合同范本
- 2025年度二零二五年度食堂檔口租賃合同與食品安全宣傳教育協(xié)議
- 農(nóng)機(jī)合作社入社協(xié)議書范本
- 二零二五年度智能駕駛技術(shù)聘用駕駛員安全合作協(xié)議書
- 2025年度船舶買賣合同中的船舶交易市場(chǎng)分析及預(yù)測(cè)
- 2025年度員工公寓租賃補(bǔ)貼協(xié)議范本
- 2025年礦山開(kāi)采承包合同實(shí)施細(xì)則4篇
- 2025年度茶葉品牌加盟店加盟合同及售后服務(wù)協(xié)議
- 氧氣、乙炔工安全操作規(guī)程(3篇)
- 建筑廢棄混凝土處置和再生建材利用措施計(jì)劃
- 集裝箱知識(shí)培訓(xùn)課件
- 某縣城區(qū)地下綜合管廊建設(shè)工程項(xiàng)目可行性實(shí)施報(bào)告
- 《架空輸電線路導(dǎo)線舞動(dòng)風(fēng)偏故障告警系統(tǒng)技術(shù)導(dǎo)則》
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫(kù)
- JJF(京) 92-2022 激光標(biāo)線儀校準(zhǔn)規(guī)范
- 普惠金融政策解讀
- 廣東省廣州黃埔區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷(含答案)
評(píng)論
0/150
提交評(píng)論