




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2.5平面向量應(yīng)用舉例2.5.1平面幾何的向量方法平面幾何中的向量方法 向量概念和運(yùn)算,都有明確的物理背景和幾何背景。當(dāng)向量與平面坐標(biāo)系結(jié)合以后,向量的運(yùn)算就可以完全轉(zhuǎn)化為“代數(shù)”的計(jì)算,這就為我們解決物理問(wèn)題和幾何研究帶來(lái)極大的方便。 由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,利用向量方法可以解決平面幾何中的一些問(wèn)題。問(wèn)題:平行四邊形是表示向量加法與減法的幾何模型。如圖,你能發(fā)現(xiàn)平行四邊形對(duì)角線的長(zhǎng)度與兩條鄰邊長(zhǎng)度之間的關(guān)系嗎?ABCD猜想:1.長(zhǎng)方形對(duì)角線的長(zhǎng)度與兩條鄰邊長(zhǎng)度之間有何關(guān)系
2、?2.類比猜想,平行四邊形有相似關(guān)系嗎?例1、證明平行四邊形四邊平方和等于兩對(duì)角線平方和ABDC已知:平行四邊形ABCD。求證:解:設(shè) ,則 分析:因?yàn)槠叫兴倪呅螌?duì)邊平行且相等,故設(shè) 其它線段對(duì)應(yīng)向量用它們表示。你能總結(jié)一下利用向量法解決平面幾何問(wèn)題的基本思路嗎?(1)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;(3)把運(yùn)算結(jié)果“翻譯”成幾何元素。用向量方法解決平面幾何問(wèn)題的“三步曲”:簡(jiǎn)述:形到向量 向量的運(yùn)算 向量和數(shù)到形例2 如圖, ABCD中,點(diǎn)E、F分別是AD 、 DC邊的中點(diǎn)
3、,BE 、 BF分別與AC交于R 、 T兩點(diǎn),你能發(fā)現(xiàn)AR 、 RT 、TC之間的關(guān)系嗎?ABCDEFRT猜想:AR=RT=TC解:設(shè) 則由于 與 共線,故設(shè)又因?yàn)?共線,所以設(shè)因?yàn)?所以ABCDEFRT線,故AT=RT=TCABCDEFRT練習(xí)、證明直徑所對(duì)的圓周角是直角ABCO如圖所示,已知O,AB為直徑,C為O上任意一點(diǎn)。求證ACB=90分析:要證ACB=90,只須證向量 ,即 。解:設(shè) 則 ,由此可得:即 ,ACB=90思考:能否用向量坐標(biāo)形式證明?解析18.(2005全國(guó))O是ABC所在平面上一點(diǎn),若 ,則O是ABC的( )(A)三個(gè)內(nèi)角的角平分線的交點(diǎn)(B)三條邊的垂直平分線的交點(diǎn)(C)三條中線的交點(diǎn)(D)三條高的交點(diǎn)則O在CA邊的高線上同理可得O在CB邊的高線上D(1)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZSM 0060-2024“領(lǐng)跑者”評(píng)價(jià)技術(shù)要求 微型往復(fù)活塞空氣壓縮機(jī)
- 二零二五年度競(jìng)業(yè)禁止期限及競(jìng)業(yè)限制解除后的競(jìng)業(yè)禁止責(zé)任及賠償執(zhí)行及監(jiān)督合同
- 二零二五年度金融衍生品合同印花稅稅率變動(dòng)與市場(chǎng)創(chuàng)新
- 二零二五年度手房過(guò)戶二手房交易中介服務(wù)合同協(xié)議
- 二零二五年度智慧能源合伙經(jīng)營(yíng)股權(quán)協(xié)議書
- 二零二五年度文藝演出宣傳推廣合作協(xié)議
- 2025年度智能債權(quán)轉(zhuǎn)讓服務(wù)合同不可適用借款合同解析
- 2025年度生態(tài)魚塘資源租賃管理合同
- 二零二五年度商鋪?zhàn)赓U糾紛解決機(jī)制合同
- 二零二五年度跨區(qū)域集體合同-XX行業(yè)職工勞動(dòng)條件提升協(xié)議
- 2023年甘肅省卷中考英語(yǔ)真題
- 最全-房屋市政工程安全生產(chǎn)標(biāo)準(zhǔn)化指導(dǎo)圖冊(cè)
- 《魅力教師的修煉》讀書心得體會(huì)4篇
- 雙壁鋼圍堰施工與管理
- 住院精神疾病患者攻擊行為預(yù)防-2023中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)
- 2016年百貨商城商場(chǎng)超市企劃全年活動(dòng)策劃方案模板
- 民航法規(guī)與實(shí)務(wù)PPT全套教學(xué)課件
- 富血小板血漿的臨床應(yīng)用
- 2023年湖南食品藥品職業(yè)學(xué)院高職單招(英語(yǔ))試題庫(kù)含答案解析
- GB/T 39096-2020石油天然氣工業(yè)油氣井油管用鋁合金管
- 爐外精煉說(shuō)課
評(píng)論
0/150
提交評(píng)論