版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、(二)測量不確定度、誤差與最佳測量能力1測量和測量不確定度的含義測量給出關(guān)于某物的屬性,它可以告訴我們某物體有多重、或多長、或多熱,即告訴我們量值有多 大。測量總是通過某種儀器或設(shè)備來實現(xiàn)的,尺子、秒表、衡器、溫度計等都是測量儀器。被測量的測 量結(jié)果通常由兩部分組成(一個數(shù)和一個測量單位),他們構(gòu)成了量值。例如:人體溫度37.2C是量值,人體溫度是被測量,37.2是數(shù),。C是單位。對于比較復(fù)雜的測量, 通過實際測量獲得被測量的測量數(shù)據(jù)后,通常需要對這些數(shù)據(jù)進(jìn)行計算、分析、整理,有時還要將數(shù)據(jù) 歸納成相應(yīng)的表示式或繪制成表格、曲線等等,亦即要進(jìn)行數(shù)據(jù)處理,然后給出測量結(jié)果。檢測校準(zhǔn)工 作的核心是
2、測量。在給出測量結(jié)果的同時,必須給出其測量不確定度。測量不確定度表明了測量結(jié)果的質(zhì)量:質(zhì)量愈 高,不確定度愈小,測量結(jié)果的使用價值愈高;質(zhì)量愈差,不確定度愈大,使用價值愈低。在檢測校準(zhǔn) 工作中,不知道不確定度的測量結(jié)果,實際上不具備完整的使用價值。測量不確定度是對測量結(jié)果存有懷疑的程度。測量不確定度亦需要用兩個數(shù)來表示:一個是測量不 確定度的大小,即置信區(qū)間的半寬;另一個是對其相信的程度,即置信概率(或稱置信水準(zhǔn)、置信水平、 包含概率),表明測量結(jié)果落在該區(qū)間有多大把握。例如:上述測量人體溫度為37.2C,或加或減0.1 C,置信水準(zhǔn)為95%。則該結(jié)果可以表示為37.2C 0.1 C,置信概率
3、為95%。這個表述是說,我們測量的人體溫度處在37.1 C到37.3C之間,有95%的把握。當(dāng)然,還有一些其 他不確定度的方式。這里表述的是最終的擴(kuò)展不確定度,它是確定測量結(jié)果區(qū)間的量,合理賦予被測量 之值分布的大部分可望包含于此區(qū)間。2測量結(jié)果及其誤差和準(zhǔn)確度2.1測量結(jié)果測量結(jié)果被定義為“由測量所得到的賦予被測量的值?!彼潜粶y量的最佳估計值,而不是真值。完 整表述測量結(jié)果時,必須同時給出其測量不確定度。必要時還應(yīng)說明測量所處的條件,或影響量的取值 范圍。測量結(jié)果是由測量所得到的值。必要時應(yīng)表明它是示值、未修正測量結(jié)果或是已修正測量結(jié)果,還 應(yīng)表明是否己對若干個測量結(jié)果進(jìn)行了平均,即它是由
4、單次測量所得,還是由多次測量所得。對于前者, 測得值就是測量結(jié)果;對于后者,測得值的算術(shù)平均值才是測量結(jié)果。在不會引起混淆的情況下,有時 也稱測得值為測量結(jié)果。2.2測量結(jié)果的誤差誤差被定義為“測量結(jié)果與被測量真值之差?!币粋€量的真值,是在被觀測時本身所具有的真實大小, 只有完善的測量才能得到真值,而實際上任何測量都有缺陷,因此真值是一個理想化的概念。由于其值 無法確切地知道,所以誤差也無法準(zhǔn)確地知道。由定義還可知誤差是兩個量值之差,即誤差表示的是一個差值,而不是區(qū)間。當(dāng)測量結(jié)果大于真值 時誤差為正值,當(dāng)測量結(jié)果小于真值時誤差為負(fù)值。因此,誤差不應(yīng)當(dāng)以“士”號的形式出現(xiàn)。誤差按其性質(zhì),可以分為
5、隨機(jī)誤差和系統(tǒng)誤差兩類。隨機(jī)誤差是“測量結(jié)果與在重復(fù)性條件下,對同 一被測量進(jìn)行無限多次測量所得結(jié)果的平均值(總體均值)之差。”而系統(tǒng)誤差是“在重復(fù)性條件下,對 同一被測量進(jìn)行無限多次測量所得結(jié)果的平均值(總體均值)與被測量的真值之差。”由于它們都是對應(yīng) 于無限多次測量的理想概念,而實際上只能用有限次測量的結(jié)果作為無限多次測量結(jié)果的估計值,因此 可以確定的只是它們的估計值。誤差經(jīng)常用于已知約定真值的情況,例如經(jīng)常用示值誤差來表示測量儀器的特性。由誤差、隨機(jī)誤差和系統(tǒng)誤差的定義可知:誤差=測量結(jié)果一真值=測量結(jié)果一總體均值+總體均值一真值=隨機(jī)誤差+系統(tǒng)誤差測量結(jié)果=真值+誤差=真值+隨機(jī)誤差+
6、系統(tǒng)誤差圖1示意了測量結(jié)果的隨機(jī)誤差、系統(tǒng)誤差和誤差之間的關(guān)系。由圖可知,誤差等于隨機(jī)誤差和系 統(tǒng)誤差的代數(shù)和。而且,由于誤差是一個差值,因此任何誤差的合成都應(yīng)采用代數(shù)相加的方法。過去在 對隨機(jī)誤差進(jìn)行合成時,通常都采用方和根法。前后的區(qū)別在于隨機(jī)誤差定義的改變。1993年前,隨機(jī)誤差被定義為“在同一量的多次測量過程中,以不可預(yù)知方式變化的測量誤差分量?!?其大小用多次重復(fù)測量結(jié)果的實驗標(biāo)準(zhǔn)差表示,因此當(dāng)時隨機(jī)誤差是用一個區(qū)間”來表示的。1993年國 際上對“隨機(jī)誤差”一詞的定義作了原則性修改,隨機(jī)誤差表示測量結(jié)果與無限多次測量所得結(jié)果的平均 值(即總體均值或期望值)之差,因此隨機(jī)誤差已不再表
7、示區(qū)間,而是表示“差值”,并且測量結(jié)果是真 值、系統(tǒng)誤差和隨機(jī)誤差三者的代數(shù)和。圖1測量誤差示意圖過去人們常常會誤用“誤差”這一術(shù)語,例如通過誤差分析給出的結(jié)果往往是被測量值不能確定的范 圍,而不是真正的誤差值。按定義,誤差與測量結(jié)果有關(guān),即不同的測量結(jié)果有不同的誤差。合理賦予 被測量的值各有其誤差而并不存在一個共同的誤差。必須區(qū)分誤差和粗差。粗差往往是由測量過程中不可重復(fù)的突發(fā)事件引起的,造成測量結(jié)果中的異 常值。顯然,它們不可能被定量地描述,也不能成為測量不確定度的一個分量。在計算測量結(jié)果和進(jìn)行 測量不確定度評定之前必須按一定規(guī)則將粗差或異常值剔除。2.3測量結(jié)果的準(zhǔn)確度測量準(zhǔn)確度被定義為
8、“測量結(jié)果與被測量的真值之間的一致程度?!倍x的注中指出,準(zhǔn)確度是一個 定性的概念,顯然就不應(yīng)該將其定量化。所謂“定性”,意味著可以說:準(zhǔn)確度高低、準(zhǔn)確度為0.25級、 準(zhǔn)確度為3等及準(zhǔn)確度符合xx標(biāo)準(zhǔn)等,而不應(yīng)該用具體的量值來表示準(zhǔn)確度。例如,盡量不使用如下表 示:準(zhǔn)確度為0.25%、16 mg、16 mg及16 mg等,即準(zhǔn)確度后不要和具體數(shù)值連用。定義的注中還指出,不要用精密度來代替準(zhǔn)確度。其原因之一是不同領(lǐng)域?qū)芏纫辉~的理解和用 法各不相同,難以統(tǒng)一,因此在VIM第二版中未對“精密度”一詞下定義。過去常將精密度理解為規(guī)定條 件下各獨立測量結(jié)果間的分散性,多次測量結(jié)果間的分散性可能很小
9、,但并不表明測得值與真值之間的 差值(誤差)一定很小。在化學(xué)分析中“精密度”一詞常常定義為“在規(guī)定條件下所獲測量結(jié)果之間的一致程度”,并用實驗標(biāo) 準(zhǔn)差定量表示。較大的實驗標(biāo)準(zhǔn)差表示較低的精密度。此外,目前有些測量儀器的說明書或技術(shù)規(guī)范中 所給出的準(zhǔn)確度,實際上指的是儀器的最大允許誤差或允許的誤差限,而不是真正意義上的準(zhǔn)確度,即 這種表示方法不符合測量準(zhǔn)確度的定義。3測量結(jié)果的不確定度及其與誤差的區(qū)別3.1測量結(jié)果的不確定度測量不確定度被定義為:“表征合理地賦予被測量之值的分散性,與測量結(jié)果相聯(lián)系的參數(shù)。注:此參數(shù)可以是諸如標(biāo)準(zhǔn)差或其倍數(shù),或說明了置信水準(zhǔn)的區(qū)間的半寬度。測量不確定度由多個分量組
10、成。其中一些分量可用測量列結(jié)果的統(tǒng)計分布估算,并用實驗標(biāo) 準(zhǔn)差表征。另一些分量則可用基于經(jīng)驗或其它信息的假定概率分布估算,也可用標(biāo)準(zhǔn)差表征。測量結(jié)果應(yīng)理解為被測量之值的最佳估計,而所有的不確定度分量均貢獻(xiàn)給了分散性,包括 那些由系統(tǒng)效應(yīng)引起的(如,與修正值和參考測量標(biāo)準(zhǔn)有關(guān)的)分量?!备鶕?jù)定義,測量不確定度表示被測量之值的分散性,因此不確定度表示一個區(qū)間,即測量結(jié)果所分 布的區(qū)間。這是測量不確定度和測量誤差的最根本的區(qū)別,測量誤差是一個差值,而測量不確定度是一 個區(qū)間。測量不確定度是測量者合理賦予給測量結(jié)果的,因此測量不確定度將或多或少與評定者有關(guān),例如 與人的經(jīng)驗、知識范圍和認(rèn)識水平等有關(guān)。
11、定義中的“合理”是指應(yīng)該考慮各種因素對測量結(jié)果的影響所 做的修正,特別是測量應(yīng)處于統(tǒng)計控制狀態(tài)下,即處于隨機(jī)控制過程中。也就是說測量應(yīng)在重復(fù)性條件 或復(fù)現(xiàn)性條件下進(jìn)行。為了表征這種分散性,測量不確定度可以用標(biāo)準(zhǔn)差,或其倍數(shù),或說明了置信水準(zhǔn)區(qū)間的半寬度來 表示。由于測量結(jié)果會受多個因素影響,因此不確定度通常由多個分量組成。對于每一個分量都要評定其 標(biāo)準(zhǔn)不確定度,評定方法分為A、B兩類。A類評定是指用對觀測列進(jìn)行統(tǒng)計分析的方法進(jìn)行的評定, 其標(biāo)準(zhǔn)不確定度用實驗標(biāo)準(zhǔn)差表征。所有與A類不同的其他評定方法均稱為B類評定,可根據(jù)經(jīng)驗或其 它信息的假定概率分布估算其不確定度,也可用標(biāo)準(zhǔn)差表征。而各種標(biāo)準(zhǔn)不
12、確定度分量的合成,稱為合 成標(biāo)準(zhǔn)不確定度,以符號uc表示,它是測量結(jié)果的標(biāo)準(zhǔn)差的估計值。無論A類還是B類評定,他們的標(biāo)準(zhǔn)不確定度均以標(biāo)準(zhǔn)差表示,因此這兩種評定方法得到的不確定 度并無實質(zhì)上的區(qū)別,只是評定方法不同而已。在對各分量合成時,兩者的合成方法也相同。因此,過 分認(rèn)真地區(qū)分每一分量究竟屬于A類還是B類評定,其實是沒有必要的。當(dāng)測量不確定度用標(biāo)準(zhǔn)差表示時,稱為標(biāo)準(zhǔn)不確定度,用小寫斜體英文字母表示。由于標(biāo)準(zhǔn)差所 對應(yīng)的置信水準(zhǔn)通常不高,在正態(tài)分布情況下僅為68.27%,因此還規(guī)定可以用標(biāo)準(zhǔn)差的倍數(shù)來表示。這 種不確定度稱為擴(kuò)展不確定度,用大寫斜體英文字母U表示。于是可得標(biāo)準(zhǔn)不確定度和擴(kuò)展不確
13、定度之 間的關(guān)系:U =kc式中,k稱為包含因子(有時也稱為覆蓋因子)。擴(kuò)展不確定度表示具有較大置信水準(zhǔn)的半寬度。包含因子有時也寫成kp的形式,它與標(biāo)準(zhǔn)不確定度 uc(y)相乘后,得到對應(yīng)于置信水準(zhǔn)為P的擴(kuò)展不確定度Up=kp uc(y)。在實際使用中,往往希望知道測量結(jié)果的置信區(qū)間,因此還規(guī)定測量不確定度也可以用說明了置信 水準(zhǔn)的區(qū)間的半寬度來表示。實際上它也是一種擴(kuò)展不確定度,當(dāng)規(guī)定的置信水準(zhǔn)為p時,擴(kuò)展不確 定度可以用符號up表示。當(dāng)已知包含因子k時,U是從其中包含k個u出發(fā)來描述的擴(kuò)展不確定度;當(dāng)已知置信水準(zhǔn)P時, Up是從該區(qū)間所對應(yīng)的P出發(fā)來描述的擴(kuò)展不確定度。兩者從不同的角度出發(fā)
14、來描述擴(kuò)展不確定度,因 此k與p之間應(yīng)該存在某種聯(lián)系,但他們之間的關(guān)系與被測量的分布有關(guān)。也就是說,只有在知道被測 量分布的情況下,才可以由k確定p,或由p確定k。這就是為什么在測量不確定度評定中經(jīng)常需要考 慮被測量分布的原因。當(dāng)置信水準(zhǔn)p為0.99或0.95時,Up可以U99或U95表示。誤差可以用絕對和相對兩種形式來表示,不確定度也同樣可以有絕對和相對兩種形式。絕對不確定 度與被測量有相同的量綱,相對不確定度的量綱為1或稱為無量綱。被測量尤的標(biāo)準(zhǔn)不確定度3)及其相對標(biāo)準(zhǔn)不確定度ure(x)之間的關(guān)系為:u (x)u (x)根據(jù)定義,測量不確定度是與測量結(jié)果相聯(lián)系的參數(shù),意指測量不確定度是一
15、個與測量結(jié)果“在一起” 的參數(shù),在測量結(jié)果的完整表述中應(yīng)該包括測量不確定度。既然不確定度是與測量結(jié)果相聯(lián)系的參數(shù), 因此一般不用它來表示測量儀器的特性,只有用儀器得到的測量結(jié)果才具有不確定度。測量儀器的特性 可以用示值誤差或最大允許誤差等術(shù)語來描述,一般不宜說“測量儀器的不確定度”或“計量標(biāo)準(zhǔn)的不確定 度”。可以將測量儀器或計量標(biāo)準(zhǔn)的不確定度,理解為由他們所提供的或復(fù)現(xiàn)的量值的不確定度。對于經(jīng) 過校準(zhǔn)并已知其示值誤差的測量儀器,有時也簡單地將其示值誤差的不確定度稱為測量儀器的不確定度。3.2測量不確定度和測量誤差的主要區(qū)別鑒于對誤差一詞的多種理解和對測量不確定度的陌生,區(qū)分其概念上的主要差別是
16、必要的(詳見表 1)。從定義上看,誤差表示測量結(jié)果對真值的偏離,它是一個確定的值。不確定度表明被測量之值的分 散性,它以分布區(qū)間的半寬表示,表示一個區(qū)間或范圍。按出現(xiàn)于測量結(jié)果中的規(guī)律,誤差通常分為隨機(jī)和系統(tǒng)兩類,他們都是基于無限多次測量所得總 體均值的理想概念。由于實際上只能進(jìn)行有限次測量,因此只能用有限次測量的平均值即樣本均值,作 為總體均值的估計值。而不確定度則是按評定方法分成A和B兩類,他們與“隨機(jī)誤差”和“系統(tǒng)誤差”的 分類之間不存在簡單的對應(yīng)關(guān)系?!半S機(jī)”和“系統(tǒng)”表示兩種不同時性質(zhì),而“A類”和“B類”表示兩種不同 的評定方法。為避免誤解和混淆,現(xiàn)已不再使用“隨機(jī)不確定度”和“系
17、統(tǒng)不確定度”這兩個術(shù)語。在進(jìn)行 測量不確定度評定時,一般不必區(qū)分各分量的性質(zhì);若需區(qū)分,應(yīng)表述為“由隨機(jī)效應(yīng)引入的分量”和“由 系統(tǒng)效應(yīng)引入的分量”。誤差的概念與真值相聯(lián)系,系統(tǒng)誤差和隨機(jī)誤差又與無限多次測量的平均值有關(guān),他們都是理想 化的概念,因而可操作性較差。不確定度則可以根據(jù)實驗、資料、經(jīng)驗等信息進(jìn)行評定,從而可以定量 確定。誤差表示兩個量的差值,當(dāng)測量結(jié)果大(?。┯谡嬷禃r誤差為正(負(fù))值,因此不應(yīng)當(dāng)以士”號的 形式出現(xiàn)。不確定度取方差的正平方根,恒為正值。誤差是一個確定的值,對各誤差分量合成時用代數(shù)相加的方法。不確定度表示一個區(qū)間,當(dāng)各不 確定度分量彼此獨立或不相關(guān)時,用方和根法進(jìn)行合
18、成,否則應(yīng)考慮加入相關(guān)項。已知系統(tǒng)誤差的估計值時,可以對測量結(jié)果進(jìn)行修正,得到已修正的測量結(jié)果。但不能用不確定 度對測量結(jié)果進(jìn)行修正。對已修正測量結(jié)果進(jìn)行不確定度評定時,應(yīng)考慮修正不完善引入的不確定度分 量。不確定度表示重復(fù)性或復(fù)觀性條件下測量結(jié)果的分散性,僅與測量方法(包括測量原理、測量儀 器、測量環(huán)境、測量程序、測量人員以及數(shù)據(jù)處理方法等)有關(guān),而與具體測得的數(shù)值大小無關(guān)。測量 結(jié)果的誤差僅與測量結(jié)果以及真值有關(guān),而與測量方法無關(guān)。例如:用鋼板尺測量某物體長度所得的測 量結(jié)果為10.0mm,若為測得更準(zhǔn)確一些而改用卡尺時所得的測量結(jié)果仍為10.0 mm,這時也許有人會認(rèn) 為后者的測量誤差更
19、小一些,但實際上兩者的測量結(jié)果相同、真值相同,從而他們的測量誤差必然也相 同。兩者的測量不確定度則是不同的,因為用這兩種方法分別進(jìn)行多次重復(fù)測量所得測量結(jié)果的分散性 是不同的。測量誤差和測量不確定度都可用來描述測量結(jié)果,但兩者在數(shù)值上并無確定的關(guān)系。測量結(jié)果可能非常接近于真值,此時其誤差很??;但由于對不確定度來源認(rèn)識不足,評定得到的不確定度可能很大。 也可能測量誤差實際上較大,但由于分析估計不足,評定得到的不確定度卻可能很小,例如當(dāng)存在尚未 發(fā)現(xiàn)的較大系統(tǒng)誤差時。由于誤差等于測量結(jié)果減去被測量的真值,因此只有在己知約定真值的條件下才可能通過測量結(jié) 果得到誤差,因此誤差是由測量得到的,而不是由分
20、析評定得到的。而不確定度則可以通過分析評定得 到,有時還得輔以必要的實驗性測量。表1測量誤差與不確定度的主要區(qū)別序號內(nèi)容測量誤差測量不確定度1定義表明測量結(jié)果偏離真值,是一個確 定的值。表明被測量之值的分散性,是一個 區(qū)間。用標(biāo)準(zhǔn)偏差,標(biāo)準(zhǔn)偏差的倍 數(shù),或說明了置信水準(zhǔn)的區(qū)間的半 寬度來表示。2分類按出現(xiàn)于測量結(jié)果中的規(guī)律,分為 隨機(jī)誤差和系統(tǒng)誤差,它們都是無 限多次測量的理想概念。按是否用統(tǒng)計方法求得,分為A 類評定和B類評定。它們都以標(biāo) 準(zhǔn)不確定度表示。在評定測量不確定度時,一般不必 區(qū)分其性質(zhì)。若需要區(qū)分時,應(yīng)表 述為“由隨機(jī)效應(yīng)引入的測量不確 定度分量”和“由系統(tǒng)效應(yīng)引入的 不確定度分
21、量”。3可操作性由于真值未知,往往不能得到測量 誤差的值。當(dāng)用約定真位代替真值 時,可以得到測量誤差的估計值。測量不確定度可以由人們根據(jù)實 驗、資料、經(jīng)驗等信息進(jìn)行評定, 從而可以定量確定測量不確定度 的值。4數(shù)值符號非正即負(fù)(或零),不能用正負(fù)(土) 號表示。是一個無符號的參數(shù),恒取正值。 當(dāng)由方差求得時,取其正平方根。5合成方法各誤差分量的代數(shù)和。當(dāng)各分量彼此獨立時用方和根法 合成,否則應(yīng)考慮加入相關(guān)項。6結(jié)果修正己知系統(tǒng)誤差的估計值時,可以對 測量結(jié)果進(jìn)行修正,得到已修正的 測量結(jié)果。不能用測量不確定度對測量結(jié)果 進(jìn)行修正。對已修正測量結(jié)果進(jìn)行 不確定度評定時,應(yīng)考慮修正不完 善引入的不
22、確定度分量。7結(jié)果說明誤差是客觀存在的,不以人的認(rèn)識 程度而轉(zhuǎn)移。誤差屬于給定的測量 結(jié)果,相同的測量結(jié)果具有相同的 誤差,而與得到該測量結(jié)果的測量 儀器和測量方法無關(guān)。測量不確定度與人們對被測量、影 響量、以及測量過程的認(rèn)識有關(guān)。 合理賦予被測量的任一個值,均具 有相同的測量不確定度。8實驗標(biāo)準(zhǔn) 差來源于給定的測量結(jié)果,它不表示 被測量估計值的隨機(jī)誤差。來源于合理賦予的被測量之值,表 示同一觀測列中,任一個估計值的標(biāo)準(zhǔn)不確定度。9自由度不存在??勺鳛椴淮_定度評定可靠程度的 指標(biāo)。10置信概率不存在當(dāng)了解分布時,可按置信概率給出 置信區(qū)間。4測量儀器的誤差、允差、準(zhǔn)確度和不確定度4.1測量儀器
23、的誤差、修正值和允差測量儀器的性能可以用示值誤差和最大允許誤差來表示。測量儀器的誤差是其示值誤差的簡稱,被定義為“測量儀器的示值與對應(yīng)輸入量的真值之差”。同型 號的不同儀器,他們的示值誤差一般是不同的。一臺儀器的示值誤差必須通過檢定或校準(zhǔn)才能獲得,正 因為如此,才需要對每一臺儀器進(jìn)行檢定或校準(zhǔn)。已知某儀器的示值誤差后,就可對其測量結(jié)果進(jìn)行修正,示值誤差反號就是該儀器的修正值。修正 后結(jié)果的不確定度就與修正值本身的不確定度有關(guān),也就是說,與檢定或校準(zhǔn)所得到的示值誤差的不確 定度有關(guān)。測量儀器的允差是其最大允許誤差的簡稱,被定義為“對給定測量儀器,規(guī)范、規(guī)程等所允許的誤 差極限值?!彼怯筛鞣N技術(shù)
24、性文件,諸如國際標(biāo)準(zhǔn)、國家標(biāo)準(zhǔn)、檢定規(guī)程、技術(shù)規(guī)范或儀器說明書等 規(guī)定的,該型號儀器允許誤差的極限值,也稱為允許誤差限。最大允許誤差可簡寫為MPE或mpe,它 不是通過檢定或校準(zhǔn)得到的,而是制造廠對該型號儀器所規(guī)定的示值誤差的允許范圍。顯然,它并不是 某臺儀器實際存在的誤差,因而不能作為修正值使用。測量儀器的MPE可以從儀器說明書中得到,其數(shù)值通常帶有“土”號。一般可以用絕對誤差、相對 誤差、弓I用誤差或他們的組合形式表示。例如,可以表示為t0.1|iV,1.5呻,1%,1x10 6滿度, (0.l%x讀數(shù)+ 0.1ns)等。MPE本身不是測量不確定度,它給出儀器示值誤差的合格區(qū)間,因而可以作
25、 為評定測量不確定度的依據(jù)。當(dāng)直接使用儀器的示值作為測量結(jié)果時,由儀器引入的標(biāo)準(zhǔn)不確定度分量, 可以根據(jù)該型號儀器的MPE按B類評定方法得到。4.2測量儀器的準(zhǔn)確度測量儀器的準(zhǔn)確度被定義為“測量儀器給出接近于真值的響應(yīng)能力”。在定義的注中指出,準(zhǔn)確度是 定性的概念。目前不少儀器說明書上給出的定量表示的準(zhǔn)確度(通常還帶有“土”號),實際上是該型號 儀器的最大允許誤差。測量儀器的準(zhǔn)確度等級是指“符合一定的計量要求,使誤差保持在規(guī)定極限以內(nèi)的測量儀器的等別、 級別”。準(zhǔn)確度等級通常按約定注以數(shù)字或符號,并稱為等級指標(biāo)。通?!暗取庇糜跇?biāo)準(zhǔn)儀器,而“級” 用于工作儀器。4.3測量儀器的不確定度不確定度是
26、一個與測量結(jié)果相聯(lián)系的參數(shù),也就是說只有測量結(jié)果才有不確定度。因此應(yīng)盡量回避 “測量儀器的不確定度”這種說法,在VIM第二版中也沒有對“測量儀器的不確定度”下過定義。但如 果測量儀器已經(jīng)過校準(zhǔn),則我們有時也將由校準(zhǔn)得到的儀器示值誤差的不確定度簡稱為儀器的不確定度。在不會引起誤解的情況下,也可將測量儀器的不確定度理解為由儀器所提供或復(fù)現(xiàn)的量值的不確定度。計量標(biāo)準(zhǔn)裝置的情況較為復(fù)雜,它可以簡單地是一臺測量儀器或量具,也可能由一系列測量儀器組 合而成(此時常稱它為“測量系統(tǒng)”)。測量不確定度是用來描述測量結(jié)果的,因此也盡量回避“計量標(biāo) 準(zhǔn)裝置的不確定度”這種說法。但如果提到“計量標(biāo)準(zhǔn)裝置的不確定度”
27、,我們可以將它理解為計量標(biāo)準(zhǔn) 裝置所提供或復(fù)現(xiàn)的標(biāo)準(zhǔn)量值的不確定度。當(dāng)用計量標(biāo)準(zhǔn)裝置對被測對象進(jìn)行檢定、校準(zhǔn)或測量時,由 它本身所引入的不確定度僅僅是測量結(jié)果不確定度的分量之一。因此也可以將“計量標(biāo)準(zhǔn)裝置的不確定 度”理解為在測量結(jié)果的不確定度中,由計量標(biāo)準(zhǔn)裝置所引入的那部分不確定度分量。5最佳測量能力及其與不確定度的區(qū)別5.1最佳測量能力歐洲實驗室認(rèn)可合作組織(EA)于1999年2月發(fā)布了EA-4/02校準(zhǔn)中的測量不確定度,該文第1.3條 關(guān)于最佳測量能力表述如下:“實驗室在其認(rèn)可范圍內(nèi),當(dāng)對近乎理想的測量標(biāo)準(zhǔn)(用于定義、實現(xiàn)、保 存或復(fù)現(xiàn)某量的單位或其一個值或多個值)進(jìn)行近乎常規(guī)的校準(zhǔn)時,或當(dāng)對近乎理想的測量儀器(用于測 量某量)進(jìn)行近乎常規(guī)的校準(zhǔn)時,可以達(dá)到的最小測量不確定度。最佳測量能力的評定應(yīng)建立在本文件描 述的方法的基礎(chǔ)之上,通常應(yīng)得到實驗證據(jù)的支持或確認(rèn)?!薄俺R?guī)校準(zhǔn)”意味著,實驗室在其認(rèn)可時所進(jìn)行的校準(zhǔn)工作,應(yīng)能達(dá)到規(guī)定的例行的(日常的)能力。 而“近乎理想”意味著,最佳測量能力不應(yīng)取決于被校準(zhǔn)測量儀器的特性,儀器對測量不確定度不產(chǎn)生 顯著的影響。但同時,這種儀器又是可以獲得的。如果實驗室可獲得的最理想儀器對測量不確定度也有 貢獻(xiàn),則這種貢獻(xiàn)應(yīng)包括在最佳測量能力中,并作出陳述:最佳測量能力適用于這一類
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年新教材高中地理 第一章 宇宙中的地球 第四節(jié) 地球的圈層結(jié)構(gòu)說課稿(1)新人教版必修1
- 2024-2025學(xué)年新教材高中化學(xué) 第4章 化學(xué)反應(yīng)與電能 第1節(jié) 微專題6 多角度認(rèn)識原電池說課稿 新人教版選擇性必修第一冊
- 2024-2025年高中化學(xué) 專題4 微專題3 常見氣體制備裝置說課稿 蘇教版必修1
- 2024-2025年九年級歷史下冊 第3課 科學(xué)的長足進(jìn)步說課稿 華東師大版
- 4同學(xué)相伴 第二課時 說課稿-2023-2024學(xué)年道德與法治三年級下冊統(tǒng)編版
- 10 愛心的傳遞者 說課稿-2023-2024學(xué)年道德與法治三年級下冊統(tǒng)編版
- 棗莊高新區(qū)合作協(xié)議糾紛
- 污水處理廠運營監(jiān)管協(xié)議書(2篇)
- 2025模具租賃合同范本(含模具設(shè)計定制服務(wù))3篇
- 二零二五年度綠色建筑產(chǎn)業(yè)借款合同
- 人教版2024-2025學(xué)年八年級上學(xué)期數(shù)學(xué)期末壓軸題練習(xí)
- 【人教版化學(xué)】必修1 知識點默寫小紙條(答案背誦版)
- 江蘇省無錫市2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(原卷版)
- 全國第三屆職業(yè)技能大賽(無人機(jī)駕駛(植保)項目)選拔賽理論考試題庫(含答案)
- 對口升學(xué)語文模擬試卷(10)-江西?。ń馕霭妫?/a>
- 《奧特萊斯業(yè)態(tài)淺析》課件
- 2022年湖南省公務(wù)員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- 國家安全教育課程教學(xué)大綱分享
- 養(yǎng)殖場獸醫(yī)服務(wù)合同
- 電氣工程及其自動化基礎(chǔ)知識單選題100道及答案解析
- HR六大板塊+三支柱體系
評論
0/150
提交評論