版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、 第一章導數(shù)及其應用主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月 日課 題變化率問題教學內(nèi)容教材第2,3,4頁的內(nèi)容。教學目標知識與能力:理解平均變化率的概念;過程與方法:了解平均變化率的幾何意義;情感態(tài)度與價值觀:會求函數(shù)在某點處附近的平均變化率教學重點平均變化率的概念、函數(shù)在某點處附近的平均變化率;教學難點平均變化率的概念突破方法通過情境演示的活動,掌握連加、連減算式的計算順序和理解連加、連減算式的含義。教學過程一創(chuàng)設情景為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學中四類問題的處理直接相關(guān):一、已知
2、物體運動的路程作為時間的函數(shù),求物體在任意時刻的速度與加速度等;二、求曲線的切線;三、求已知函數(shù)的最大值與最小值;四、求長度、面積、體積和重心等。導數(shù)是微積分的核心概念之一它是研究函數(shù)增減、變化快慢、最大(?。┲档葐栴}最一般、最有效的工具。導數(shù)研究的問題即變化率問題:研究某個變量相對于另一個變量變化的快慢程度二新課講授(一)問題提出問題1 氣球膨脹率 我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學角度,如何描述這種現(xiàn)象呢?氣球的體積V(單位:L)與半徑r(單位:dm)之間的函數(shù)關(guān)系是如果將半徑r表示為體積V的函數(shù),那么分析: ,hto 當
3、V從0增加到1時,氣球半徑增加了氣球的平均膨脹率為當V從1增加到2時,氣球半徑增加了氣球的平均膨脹率為可以看出,隨著氣球體積逐漸增大,它的平均膨脹率逐漸變小了思考:當空氣容量從V1增加到V2時,氣球的平均膨脹率是多少? 問題2 高臺跳水在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系h(t)= -4.9t2+6.5t+10.如何用運動員在某些時間段內(nèi)的平均速度粗略地描述其運動狀態(tài)?思考計算:和的平均速度在這段時間里,;在這段時間里,探究:計算運動員在這段時間里的平均速度,并思考以下問題:運動員在這段時間內(nèi)使靜止的嗎?你認為用平均速度描述運動員的運動
4、狀態(tài)有什么問題嗎?探究過程:如圖是函數(shù)h(t)= -4.9t2+6.5t+10的圖像,結(jié)合圖形可知,所以,雖然運動員在這段時間里的平均速度為,但實際情況是運動員仍然運動,并非靜止,可以說明用平均速度不能精確描述運動員的運動狀態(tài)(二)平均變化率概念:1上述問題中的變化率可用式子 表示, 稱為函數(shù)f(x)從x1到x2的平均變化率2若設, (這里看作是對于x1的一個“增量”可用x1+代替x2,同樣)則平均變化率為思考:觀察函數(shù)f(x)的圖象平均變化率表示什么?三典例分析例1已知函數(shù)f(x)=的圖象上的一點及臨近一點,則 例2求在附近的平均變化率。四課堂練習1質(zhì)點運動規(guī)律為,則在時間中相應的平均速度為
5、 2.物體按照s(t)=3t2+t+4的規(guī)律作直線運動,求在4s附近的平均變化率.3.過曲線y=f(x)=x3上兩點P(1,1)和Q (1+x,1+y)作曲線的割線,求出當x=0.1時割線的斜率.五回顧總結(jié)1平均變化率的概念2函數(shù)在某點處附近的平均變化率六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016 年 月 日課 題導數(shù)的概念教學內(nèi)容教材第5,6,7頁.教學目標知識與能力:了解瞬時速度、瞬時變化率的概念;過程與方法:理解導數(shù)的概念,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內(nèi)涵;情感態(tài)度與價值觀:會求函數(shù)在某點的導數(shù)教學重點瞬時速度、瞬時變化率的概念、導數(shù)
6、的概念;教學難點導數(shù)的概念突破方法小組合作交流,共同探究。教學過程一創(chuàng)設情景(一)平均變化率(二)探究:計算運動員在這段時間里的平均速度,并思考以下問題:運動員在這段時間內(nèi)使靜止的嗎?你認為用平均速度描述運動員的運動狀態(tài)有什么問題嗎?探究過程:如圖是函數(shù)h(t)= -4.9t2+6.5t+10的圖像,結(jié)合圖形可知,hto 所以,雖然運動員在這段時間里的平均速度為,但實際情況是運動員仍然運動,并非靜止,可以說明用平均速度不能精確描述運動員的運動狀態(tài)二新課講授1瞬時速度我們把物體在某一時刻的速度稱為瞬時速度。運動員的平均速度不能反映他在某一時刻的瞬時速度,那么,如何求運動員的瞬時速度呢?比如,時的
7、瞬時速度是多少?考察附近的情況:思考:當趨近于0時,平均速度有什么樣的變化趨勢?結(jié)論:當趨近于0時,即無論從小于2的一邊,還是從大于2的一邊趨近于2時,平均速度都趨近于一個確定的值從物理的角度看,時間間隔無限變小時,平均速度就無限趨近于史的瞬時速度,因此,運動員在時的瞬時速度是為了表述方便,我們用表示“當,趨近于0時,平均速度趨近于定值”小結(jié):局部以勻速代替變速,以平均速度代替瞬時速度,然后通過取極限,從瞬時速度的近似值過渡到瞬時速度的精確值。2 導數(shù)的概念從函數(shù)y=f(x)在x=x0處的瞬時變化率是:我們稱它為函數(shù)在出的導數(shù),記作或,即說明:(1)導數(shù)即為函數(shù)y=f(x)在x=x0處的瞬時變
8、化率 (2),當時,所以三典例分析例1(1)求函數(shù)y=3x2在x=1處的導數(shù).(2)求函數(shù)f(x)=在附近的平均變化率,并求出在該點處的導數(shù) 例2(課本例1)將原油精煉為汽油、柴油、塑膠等各種不同產(chǎn)品,需要對原油進行冷卻和加熱,如果第時,原油的溫度(單位:)為,計算第時和第時,原油溫度的瞬時變化率,并說明它們的意義解:在第時和第時,原油溫度的瞬時變化率就是和根據(jù)導數(shù)定義,所以同理可得:在第時和第時,原油溫度的瞬時變化率分別為和5,說明在附近,原油溫度大約以的速率下降,在第附近,原油溫度大約以的速率上升注:一般地,反映了原油溫度在時刻附近的變化情況四課堂練習1質(zhì)點運動規(guī)律為,求質(zhì)點在的瞬時速度為
9、2求曲線y=f(x)=x3在時的導數(shù)3例2中,計算第時和第時,原油溫度的瞬時變化率,并說明它們的意義五回顧總結(jié)1瞬時速度、瞬時變化率的概念2導數(shù)的概念六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月 日課 題導數(shù)的幾何意義教學內(nèi)容教材第7,8,9,10頁內(nèi)容教學目標知識與能力:1了解平均變化率與割線斜率之間的關(guān)系;過程與方法:2理解曲線的切線的概念;情感態(tài)度和價值觀:3通過函數(shù)的圖像直觀地理解導數(shù)的幾何意義,并會用導數(shù)的幾何意義解題;教學重點曲線的切線的概念、切線的斜率、導數(shù)的幾何意義;教學難點導數(shù)的幾何意義突破方法通過學生自主探究活動,幫助學生理解和
10、掌握加減混合的計算順序,會計算加減混合式題。教學過程一創(chuàng)設情景(一)平均變化率、割線的斜率(二)瞬時速度、導數(shù)我們知道,導數(shù)表示函數(shù)y=f(x)在x=x0處的瞬時變化率,反映了函數(shù)y=f(x)在x=x0附近的變化情況,導數(shù)的幾何意義是什么呢?二新課講授(一)曲線的切線及切線的斜率:如圖3.1-2,當沿著曲線趨近于點時,割線的變化趨勢是什么?我們發(fā)現(xiàn),當點沿著曲線無限接近點P即x0時,割線趨近于確定的位置,這個確定位置的直線PT稱為曲線在點P處的切線.問題:割線的斜率與切線PT的斜率有什么關(guān)系? 切線PT的斜率為多少?容易知道,割線的斜率是,當點沿著曲線無限接近點P時,無限趨近于切線PT的斜率,
11、即說明:(1)設切線的傾斜角為,那么當x0時,割線PQ的斜率,稱為曲線在點P處的切線的斜率.這個概念: 提供了求曲線上某點切線的斜率的一種方法; 切線斜率的本質(zhì)函數(shù)在處的導數(shù).(2)曲線在某點處的切線:1)與該點的位置有關(guān);2)要根據(jù)割線是否有極限位置來判斷與求解.如有極限,則在此點有切線,且切線是唯一的;如不存在,則在此點處無切線;3)曲線的切線,并不一定與曲線只有一個交點,可以有多個,甚至可以無窮多個.(二)導數(shù)的幾何意義:函數(shù)y=f(x)在x=x0處的導數(shù)等于在該點處的切線的斜率,即 說明:求曲線在某點處的切線方程的基本步驟:求出P點的坐標;求出函數(shù)在點處的變化率 ,得到曲線在點的切線的
12、斜率;利用點斜式求切線方程.(二)導函數(shù):由函數(shù)f(x)在x=x0處求導數(shù)的過程可以看到,當時, 是一個確定的數(shù),那么,當x變化時,便是x的一個函數(shù),我們叫它為f(x)的導函數(shù).記作:或,即: 注:在不致發(fā)生混淆時,導函數(shù)也簡稱導數(shù)(三)函數(shù)在點處的導數(shù)、導函數(shù)、導數(shù) 之間的區(qū)別與聯(lián)系。1)函數(shù)在一點處的導數(shù),就是在該點的函數(shù)的改變量與自變量的改變量之比的極限,它是一個常數(shù),不是變數(shù)。2)函數(shù)的導數(shù),是指某一區(qū)間內(nèi)任意點x而言的, 就是函數(shù)f(x)的導函數(shù) 3)函數(shù)在點處的導數(shù)就是導函數(shù)在處的函數(shù)值,這也是 求函數(shù)在點處的導數(shù)的方法之一。三典例分析例1:(1)求曲線y=f(x)=x2+1在點P
13、(1,2)處的切線方程.(2)求函數(shù)y=3x2在點處的導數(shù).解:(1),所以,所求切線的斜率為2,因此,所求的切線方程為即(2)因為所以,所求切線的斜率為6,因此,所求的切線方程為即(2)求函數(shù)f(x)=在附近的平均變化率,并求出在該點處的導數(shù) 解: 例2(課本例2)如圖3.1-3,它表示跳水運動中高度隨時間變化的函數(shù),根據(jù)圖像,請描述、比較曲線在、附近的變化情況解:我們用曲線在、處的切線,刻畫曲線在上述三個時刻附近的變化情況當時,曲線在處的切線平行于軸,所以,在附近曲線比較平坦,幾乎沒有升降當時,曲線在處的切線的斜率,所以,在附近曲線下降,即函數(shù)在附近單調(diào)遞減當時,曲線在處的切線的斜率,所以
14、,在附近曲線下降,即函數(shù)在附近單調(diào)遞減從圖3.1-3可以看出,直線的傾斜程度小于直線的傾斜程度,這說明曲線在附近比在附近下降的緩慢例3(課本例3)如圖3.1-4,它表示人體血管中藥物濃度(單位:)隨時間(單位:)變化的圖象根據(jù)圖像,估計時,血管中藥物濃度的瞬時變化率(精確到)解:血管中某一時刻藥物濃度的瞬時變化率,就是藥物濃度在此時刻的導數(shù),從圖像上看,它表示曲線在此點處的切線的斜率如圖3.1-4,畫出曲線上某點處的切線,利用網(wǎng)格估計這條切線的斜率,可以得到此時刻藥物濃度瞬時變化率的近似值作處的切線,并在切線上去兩點,如,則它的斜為: 所以 下表給出了藥物濃度瞬時變化率的估計值:四課堂練習1求
15、曲線y=f(x)=x3在點處的切線;2求曲線在點處的切線五回顧總結(jié)1曲線的切線及切線的斜率;2導數(shù)的幾何意義六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間:2016 年 月 日課 題幾個常用函數(shù)的導數(shù)教學內(nèi)容教材第14,15頁的內(nèi)容教學目標知識與能力:使學生應用由定義求導數(shù)的三個步驟推導四種常見函數(shù)、的導數(shù)公式;過程與方法:掌握并能運用這四個公式正確求函數(shù)的導數(shù)情感態(tài)度與價值觀:掌握并能運用這四個公式正確求函數(shù)的導數(shù)教學重點四種常見函數(shù)、的導數(shù)公式及應用教學難點四種常見函數(shù)、的導數(shù)公式突破方法通過學生自主探究活動,幫助學生理解和掌握加減混合的計算順序,會計算加減混合式
16、題。教學過程一創(chuàng)設情景我們知道,導數(shù)的幾何意義是曲線在某一點處的切線斜率,物理意義是運動物體在某一時刻的瞬時速度那么,對于函數(shù),如何求它的導數(shù)呢?由導數(shù)定義本身,給出了求導數(shù)的最基本的方法,但由于導數(shù)是用極限來定義的,所以求導數(shù)總是歸結(jié)到求極限這在運算上很麻煩,有時甚至很困難,為了能夠較快地求出某些函數(shù)的導數(shù),這一單元我們將研究比較簡捷的求導數(shù)的方法,下面我們求幾個常用的函數(shù)的導數(shù)二新課講授1函數(shù)的導數(shù) 根據(jù)導數(shù)定義,因為所以表示函數(shù)圖像(圖3.2-1)上每一點處的切線的斜率都為0若表示路程關(guān)于時間的函數(shù),則可以解釋為某物體的瞬時速度始終為0,即物體一直處于靜止狀態(tài)2函數(shù)的導數(shù)因為所以表示函數(shù)
17、圖像(圖3.2-2)上每一點處的切線的斜率都為1若表示路程關(guān)于時間的函數(shù),則可以解釋為某物體做瞬時速度為1的勻速運動3函數(shù)的導數(shù)因為所以表示函數(shù)圖像(圖3.2-3)上點處的切線的斜率都為,說明隨著的變化,切線的斜率也在變化另一方面,從導數(shù)作為函數(shù)在一點的瞬時變化率來看,表明:當時,隨著的增加,函數(shù)減少得越來越慢;當時,隨著的增加,函數(shù)增加得越來越快若表示路程關(guān)于時間的函數(shù),則可以解釋為某物體做變速運動,它在時刻的瞬時速度為4函數(shù)的導數(shù)因為所以(2)推廣:若,則三課堂練習1課本P13探究12課本P13探究24求函數(shù)的導數(shù)四回顧總結(jié)五布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授
18、課時間: 2016 年 月 日課 題基本初等函數(shù)的導數(shù)公式及導數(shù)的運算法則教學內(nèi)容教材第16頁內(nèi)容教學目標知識與技能:熟練掌握基本初等函數(shù)的導數(shù)公式;過程與方法:掌握導數(shù)的四則運算法則;情感態(tài)度和價值觀:能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù)教學重點基本初等函數(shù)的導數(shù)公式、導數(shù)的四則運算法則教學難點基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則的應用突破方法通過多種形式的數(shù)學活動和評價,提高學生口算能力和計算正確率。教學過程一創(chuàng)設情景函數(shù)導數(shù)四種常見函數(shù)、的導數(shù)公式及應用二新課講授(一)基本初等函數(shù)的導數(shù)公式表函數(shù)導數(shù)(二)導數(shù)的運算法則導數(shù)運算法則123(2)推論
19、: (常數(shù)與函數(shù)的積的導數(shù),等于常數(shù)乘函數(shù)的導數(shù))三典例分析例1假設某國家在20年期間的年均通貨膨脹率為,物價(單位:元)與時間(單位:年)有如下函數(shù)關(guān)系,其中為時的物價假定某種商品的,那么在第10個年頭,這種商品的價格上漲的速度大約是多少(精確到0.01)?解:根據(jù)基本初等函數(shù)導數(shù)公式表,有所以(元/年)因此,在第10個年頭,這種商品的價格約為0.08元/年的速度上漲例2根據(jù)基本初等函數(shù)的導數(shù)公式和導數(shù)運算法則,求下列函數(shù)的導數(shù)(1)(2)y ;(3)y x sin x ln x;(4)y ;(5)y (6)y (2 x25 x 1)ex(7) y 【點評】 求導數(shù)是在定義域內(nèi)實行的 求較復
20、雜的函數(shù)積、商的導數(shù),必須細心、耐心例3日常生活中的飲水通常是經(jīng)過凈化的隨著水純凈度的提高,所需凈化費用不斷增加已知將1噸水凈化到純凈度為時所需費用(單位:元)為求凈化到下列純凈度時,所需凈化費用的瞬時變化率:(1) (2)解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導數(shù)因為,所以,純凈度為時,費用的瞬時變化率是52.84元/噸因為,所以,純凈度為時,費用的瞬時變化率是1321元/噸 函數(shù)在某點處導數(shù)的大小表示函數(shù)在此點附近變化的快慢由上述計算可知,它表示純凈度為左右時凈化費用的瞬時變化率,大約是純凈度為左右時凈化費用的瞬時變化率的25倍這說明,水的純凈度越高,需要的凈化費用就越多,而且凈化費用
21、增加的速度也越快四課堂練習1課本P92練習2已知曲線C:y 3 x 42 x39 x24,求曲線C上橫坐標為1的點的切線方程;(y 12 x 8)五回顧總結(jié)(1)基本初等函數(shù)的導數(shù)公式表(2)導數(shù)的運算法則六布置作業(yè)板書設計 課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月 日課 題復合函數(shù)的求導法則教學內(nèi)容教材第17,18內(nèi)容。教學目標知識與技能:理解并掌握復合函數(shù)的求導法則過程與方法:理解并掌握復合函數(shù)的求導法則情感態(tài)度和價值觀:函數(shù)的求導法則的應用教學重點復合函數(shù)的求導方法:復合函數(shù)對自變量的導數(shù),等于已知函數(shù)對中間變量的導數(shù)乘以中間變量對自變量的導數(shù)之積教學難點
22、正確分解復合函數(shù)的復合過程,做到不漏,不重,熟練,正確突破方法通過多種形式的練習,提高學生應用所學數(shù)學知識解決簡單實際問題的能力。教學過程一創(chuàng)設情景(一)基本初等函數(shù)的導數(shù)公式表函數(shù)導數(shù)(二)導數(shù)的運算法則導數(shù)運算法則123(2)推論: (常數(shù)與函數(shù)的積的導數(shù),等于常數(shù)乘函數(shù)的導數(shù))二新課講授復合函數(shù)的概念 一般地,對于兩個函數(shù)和,如果通過變量,可以表示成的函數(shù),那么稱這個函數(shù)為函數(shù)和的復合函數(shù),記作。復合函數(shù)的導數(shù) 復合函數(shù)的導數(shù)和函數(shù)和的導數(shù)間的關(guān)系為,即對的導數(shù)等于對的導數(shù)與對的導數(shù)的乘積若,則三典例分析例1求y sin(tan x2)的導數(shù)【點評】求復合函數(shù)的導數(shù),關(guān)鍵在于搞清楚復合函
23、數(shù)的結(jié)構(gòu),明確復合次數(shù),由外層向內(nèi)層逐層求導,直到關(guān)于自變量求導,同時應注意不能遺漏求導環(huán)節(jié)并及時化簡計算結(jié)果例2求y 的導數(shù)【點評】本題練習商的導數(shù)和復合函數(shù)的導數(shù)求導數(shù)后要予以化簡整理例3求y sin4x cos 4x的導數(shù)【解法一】y sin 4x cos 4x(sin2x cos2x)22sin2cos2x1sin22 x1(1cos 4 x)cos 4 xysin 4 x【解法二】y(sin 4 x)(cos 4 x)4 sin 3 x(sin x)4 cos 3x (cos x)4 sin 3 x cos x 4 cos 3 x (sin x)4 sin x cos x (sin
24、2 x cos 2 x)2 sin 2 x cos 2 xsin 4 x【點評】解法一是先化簡變形,簡化求導數(shù)運算,要注意變形準確解法二是利用復合函數(shù)求導數(shù),應注意不漏步例4曲線y x(x 1)(2x)有兩條平行于直線y x的切線,求此二切線之間的距離【解】y x 3 x 2 2 x y3 x 22 x 2 令y1即3 x22 x 10,解得 x 或x 1于是切點為P(1,2),Q(,),過點P的切線方程為,y 2x 1即 x y 10顯然兩切線間的距離等于點Q 到此切線的距離,故所求距離為四課堂練習1求下列函數(shù)的導數(shù) (1) y =sinx3+sin33x;(2);(3)2.求的導數(shù)五回顧總
25、結(jié)六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月 日課 題函數(shù)的單調(diào)性與導數(shù)教學內(nèi)容教材第23,24,25,26,27,28頁內(nèi)容。教學目標知識與技能:了解可導函數(shù)的單調(diào)性與其導數(shù)的關(guān)系;過程與方法:了解可導函數(shù)的單調(diào)性與其導數(shù)的關(guān)系;情感態(tài)度和價值觀:能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次;教學重點利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間教學難點利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間突破方法通過多種形式的練習,提高學生應用所學數(shù)學知識解決簡單實際問題的能力。教學過程一
26、創(chuàng)設情景函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學模型,研究函數(shù)時,了解函數(shù)的贈與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個基本的了解下面,我們運用導數(shù)研究函數(shù)的性質(zhì),從中體會導數(shù)在研究函數(shù)中的作用二新課講授 1問題:圖3.3-1(1),它表示跳水運動中高度隨時間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺跳水運動員的速度隨時間變化的函數(shù)的圖像運動員從起跳到最高點,以及從最高點到入水這兩段時間的運動狀態(tài)有什么區(qū)別?通過觀察圖像,我們可以發(fā)現(xiàn):運動員從起點到最高點,離水面的高度隨時間的增加而增加,即是增函數(shù)相應地,從最高點到入水,運
27、動員離水面的高度隨時間的增加而減少,即是減函數(shù)相應地,2函數(shù)的單調(diào)性與導數(shù)的關(guān)系觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導數(shù)正負的關(guān)系如圖3.3-3,導數(shù)表示函數(shù)在點處的切線的斜率在處,切線是“左下右上”式的,這時,函數(shù)在附近單調(diào)遞增;在處,切線是“左上右下”式的,這時,函數(shù)在附近單調(diào)遞減結(jié)論:函數(shù)的單調(diào)性與導數(shù)的關(guān)系在某個區(qū)間內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減說明:(1)特別的,如果,那么函數(shù)在這個區(qū)間內(nèi)是常函數(shù)3求解函數(shù)單調(diào)區(qū)間的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;(4)解不等式,解集在定義域內(nèi)的
28、部分為減區(qū)間三典例分析例1已知導函數(shù)的下列信息:當時,;當,或時,;當,或時,試畫出函數(shù)圖像的大致形狀解:當時,可知在此區(qū)間內(nèi)單調(diào)遞增;當,或時,;可知在此區(qū)間內(nèi)單調(diào)遞減;當,或時,這兩點比較特殊,我們把它稱為“臨界點”綜上,函數(shù)圖像的大致形狀如圖3.3-4所示例2判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間(1); (2)(3); (4)解:(1)因為,所以, 因此,在R上單調(diào)遞增,如圖3.3-5(1)所示(2)因為,所以, 當,即時,函數(shù)單調(diào)遞增;當,即時,函數(shù)單調(diào)遞減;函數(shù)的圖像如圖3.3-5(2)所示(3)因為,所以, 因此,函數(shù)在單調(diào)遞減,如圖3.3-5(3)所示(4)因為,所以 當,即 時
29、,函數(shù) ;當,即 時,函數(shù) ;函數(shù)的圖像如圖3.3-5(4)所示注:(3)、(4)生練如圖3.3-6,水以常速(即單位時間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請分別找出與各容器對應的水的高度與時間的函數(shù)關(guān)系圖像分析:以容器(2)為例,由于容器上細下粗,所以水以常速注入時,開始階段高度增加得慢,以后高度增加得越來越快反映在圖像上,(A)符合上述變化情況同理可知其它三種容器的情況 解:思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢結(jié)合圖像,你能從導數(shù)的角度解釋變化快慢的情況嗎? 一般的,如果一個函數(shù)在某一范圍內(nèi)導數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化
30、的快,這時,函數(shù)的圖像就比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,在或內(nèi)的圖像“平緩”求證:函數(shù)在區(qū)間內(nèi)是減函數(shù)證明:因為當即時,所以函數(shù)在區(qū)間內(nèi)是減函數(shù)說明:證明可導函數(shù)在內(nèi)的單調(diào)性步驟:(1)求導函數(shù);(2)判斷在內(nèi)的符號;(3)做出結(jié)論:為增函數(shù),為減函數(shù)已知函數(shù) 在區(qū)間上是增函數(shù),求實數(shù)的取值范圍解:,因為在區(qū)間上是增函數(shù),所以對恒成立,即對恒成立,解之得:所以實數(shù)的取值范圍為說明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見的題型,常利用導數(shù)與函數(shù)單調(diào)性關(guān)系:即“若函數(shù)單調(diào)遞增,則;若函數(shù)單調(diào)遞減,則”來求解,注意此時公式中的等號不能省略
31、,否則漏解四課堂練習1求下列函數(shù)的單調(diào)區(qū)間1.f(x)=2x36x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx2課本 練習五回顧總結(jié)(1)函數(shù)的單調(diào)性與導數(shù)的關(guān)系(2)求解函數(shù)單調(diào)區(qū)間(3)證明可導函數(shù)在內(nèi)的單調(diào)性六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月 日課 題函數(shù)的極值與導數(shù)教學內(nèi)容教材第28,29,30,31頁內(nèi)容。教學目標知識與技能:理解極大值、極小值的概念;過程與方法:能夠運用判別極大值、極小值的方法來求函數(shù)的極值;情感態(tài)度和價值觀:掌握求可導函數(shù)的極值的步驟;教學重點極大、極小值的概念和判別方法
32、,以及求可導函數(shù)的極值的步驟.教學難點對極大、極小值概念的理解及求可導函數(shù)的極值的步驟突破方法通過多種形式的練習,提高學生應用所學數(shù)學知識解決簡單實際問題的能力。教學過程一創(chuàng)設情景觀察圖3.3-8,我們發(fā)現(xiàn),時,高臺跳水運動員距水面高度最大那么,函數(shù)在此點的導數(shù)是多少呢?此點附近的圖像有什么特點?相應地,導數(shù)的符號有什么變化規(guī)律?放大附近函數(shù)的圖像,如圖3.3-9可以看出;在,當時,函數(shù)單調(diào)遞增,;當時,函數(shù)單調(diào)遞減,;這就說明,在附近,函數(shù)值先增(,)后減(,)這樣,當在的附近從小到大經(jīng)過時,先正后負,且連續(xù)變化,于是有對于一般的函數(shù),是否也有這樣的性質(zhì)呢?附:對極大、極小值概念的理解,可以
33、結(jié)合圖象進行說明.并且要說明函數(shù)的極值是就函數(shù)在某一點附近的小區(qū)間而言的. 從圖象觀察得出,判別極大、極小值的方法.判斷極值點的關(guān)鍵是這點兩側(cè)的導數(shù)異號二新課講授 1問題:圖3.3-1(1),它表示跳水運動中高度隨時間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺跳水運動員的速度隨時間變化的函數(shù)的圖像運動員從起跳到最高點,以及從最高點到入水這兩段時間的運動狀態(tài)有什么區(qū)別?通過觀察圖像,我們可以發(fā)現(xiàn):運動員從起點到最高點,離水面的高度隨時間的增加而增加,即是增函數(shù)相應地,從最高點到入水,運動員離水面的高度隨時間的增加而減少,即是減函數(shù)相應地,2函數(shù)的單調(diào)性與導數(shù)的關(guān)系觀察下面函數(shù)的圖像,探討函數(shù)的
34、單調(diào)性與其導數(shù)正負的關(guān)系如圖3.3-3,導數(shù)表示函數(shù)在點處的切線的斜率在處,切線是“左下右上”式的,這時,函數(shù)在附近單調(diào)遞增;在處,切線是“左上右下”式的,這時,函數(shù)在附近單調(diào)遞減結(jié)論:函數(shù)的單調(diào)性與導數(shù)的關(guān)系在某個區(qū)間內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減說明:(1)特別的,如果,那么函數(shù)在這個區(qū)間內(nèi)是常函數(shù)3求解函數(shù)單調(diào)區(qū)間的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間三典例分析例1已知導函數(shù)的下列信息:當時,;當,或時,;當,或時,試畫出函數(shù)圖像的大致形狀解:當時
35、,可知在此區(qū)間內(nèi)單調(diào)遞增;當,或時,;可知在此區(qū)間內(nèi)單調(diào)遞減;當,或時,這兩點比較特殊,我們把它稱為“臨界點”綜上,函數(shù)圖像的大致形狀如圖3.3-4所示例2判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間(1); (2)(3); (4)解:(1)因為,所以, 因此,在R上單調(diào)遞增,如圖3.3-5(1)所示(2)因為,所以, 當,即時,函數(shù)單調(diào)遞增;當,即時,函數(shù)單調(diào)遞減;函數(shù)的圖像如圖3.3-5(2)所示因為,所以, 因此,函數(shù)在單調(diào)遞減,如圖3.3-5(3)所示因為,所以 當,即 時,函數(shù) ;當,即 時,函數(shù) ;函數(shù)的圖像如圖3.3-5(4)所示注:(3)、(4)生練如圖3.3-6,水以常速(即單位時間
36、內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請分別找出與各容器對應的水的高度與時間的函數(shù)關(guān)系圖像分析:以容器(2)為例,由于容器上細下粗,所以水以常速注入時,開始階段高度增加得慢,以后高度增加得越來越快反映在圖像上,(A)符合上述變化情況同理可知其它三種容器的情況解:思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢結(jié)合圖像,你能從導數(shù)的角度解釋變化快慢的情況嗎? 一般的,如果一個函數(shù)在某一范圍內(nèi)導數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化的快,這時,函數(shù)的圖像就比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,在或內(nèi)的圖
37、像“平緩”求證:函數(shù)在區(qū)間內(nèi)是減函數(shù)證明:因為當即時,所以函數(shù)在區(qū)間內(nèi)是減函數(shù)說明:證明可導函數(shù)在內(nèi)的單調(diào)性步驟:(1)求導函數(shù);(2)判斷在內(nèi)的符號;(3)做出結(jié)論:為增函數(shù),為減函數(shù)已知函數(shù) 在區(qū)間上是增函數(shù),求實數(shù)的取值范圍解:,因為在區(qū)間上是增函數(shù),所以對恒成立,即對恒成立,解之得:所以實數(shù)的取值范圍為說明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見的題型,常利用導數(shù)與函數(shù)單調(diào)性關(guān)系:即“若函數(shù)單調(diào)遞增,則;若函數(shù)單調(diào)遞減,則”來求解,注意此時公式中的等號不能省略,否則漏解四課堂練習1求下列函數(shù)的單調(diào)區(qū)間1.f(x)=2x36x2+7 2.f(x)=+2x 3. f(x)=sinx ,
38、 x 4. y=xlnx2課本P101練習五回顧總結(jié)(1)函數(shù)的單調(diào)性與導數(shù)的關(guān)系(2)求解函數(shù)單調(diào)區(qū)間(3)證明可導函數(shù)在內(nèi)的單調(diào)性六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月 日課 題函數(shù)的最大(小)值與導數(shù)教學內(nèi)容教材第31,32,33頁內(nèi)容。教學目標知識與技能:使學生理解函數(shù)的最大值和最小值的概念,掌握可導函數(shù)在閉區(qū)間上所有點(包括端點)處的函數(shù)中的最大(或最小)值必有的充分條件;過程與方法:使學生掌握用導數(shù)求函數(shù)的極值及最值的方法和步驟情感態(tài)度和價值觀:使學生掌握用導數(shù)求函數(shù)的極值及最值的方法和步驟教學重點利用導數(shù)求函數(shù)的最大值和最小值的
39、方法.教學難點函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系突破方法通過多種形式的練習,提高學生應用所學數(shù)學知識解決簡單實際問題的能力。教學過程一創(chuàng)設情景我們知道,極值反映的是函數(shù)在某一點附近的局部性質(zhì),而不是函數(shù)在整個定義域內(nèi)的性質(zhì)也就是說,如果是函數(shù)的極大(?。┲迭c,那么在點附近找不到比更大(?。┑闹档牵诮鉀Q實際問題或研究函數(shù)的性質(zhì)時,我們更關(guān)心函數(shù)在某個區(qū)間上,哪個至最大,哪個值最小如果是函數(shù)的最大(?。┲?,那么不小(大)于函數(shù)在相應區(qū)間上的所有函數(shù)值二新課講授觀察圖中一個定義在閉區(qū)間上的函數(shù)的圖象圖中與是極小值,是極大值函數(shù)在上的最大值是,最小值是1結(jié)論:一般地,在閉區(qū)間上
40、函數(shù)的圖像是一條連續(xù)不斷的曲線,那么函數(shù)在上必有最大值與最小值說明:如果在某一區(qū)間上函數(shù)的圖像是一條連續(xù)不斷的曲線,則稱函數(shù)在這個區(qū)間上連續(xù)(可以不給學生講)給定函數(shù)的區(qū)間必須是閉區(qū)間,在開區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值如函數(shù)在內(nèi)連續(xù),但沒有最大值與最小值;在閉區(qū)間上的每一點必須連續(xù),即函數(shù)圖像沒有間斷,函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件(可以不給學生講)2“最值”與“極值”的區(qū)別和聯(lián)系最值”是整體概念,是比較整個定義域內(nèi)的函數(shù)值得出的,具有絕對性;而“極值”是個局部概念,是比較極值點附近函數(shù)值得出的,具有相對性從個數(shù)上看,一個函數(shù)在其定義域上的最值
41、是唯一的;而極值不唯一;函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個,而函數(shù)的極值可能不止一個,也可能沒有一個極值只能在定義域內(nèi)部取得,而最值可以在區(qū)間的端點處取得,有極值的未必有最值,有最值的未必有極值;極值有可能成為最值,最值只要不在端點必定是極值3利用導數(shù)求函數(shù)的最值步驟:由上面函數(shù)的圖象可以看出,只要把連續(xù)函數(shù)所有的極值與定義區(qū)間端點的函數(shù)值進行比較,就可以得出函數(shù)的最值了一般地,求函數(shù)在上的最大值與最小值的步驟如下:求在內(nèi)的極值;將的各極值與端點處的函數(shù)值、比較,其中最大的一個是最大值,最小的一個是最小值,得出函數(shù)在上的最值三典例分析例1(課本例5)求在的最大值與最小值 解: 由例
42、4可知,在上,當時,有極小值,并且極小值為,又由于,因此,函數(shù)在的最大值是4,最小值是上述結(jié)論可以從函數(shù)在上的圖象得到直觀驗證四課堂練習1下列說法正確的是( )A.函數(shù)的極大值就是函數(shù)的最大值 B.函數(shù)的極小值就是函數(shù)的最小值C.函數(shù)的最值一定是極值 D.在閉區(qū)間上的連續(xù)函數(shù)一定存在最值2函數(shù)y=f(x)在區(qū)間a,b上的最大值是M,最小值是m,若M=m,則f(x) ( )A.等于0B.大于0 C.小于0D.以上都有可能3函數(shù)y=,在1,1上的最小值為( )A.0 B.2 C.1 D.4求函數(shù)在區(qū)間上的最大值與最小值5課本 練習五回顧總結(jié)1函數(shù)在閉區(qū)間上的最值點必在下列各種點之中:導數(shù)等于零的點
43、,導數(shù)不存在的點,區(qū)間端點;2函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件;3閉區(qū)間上的連續(xù)函數(shù)一定有最值;開區(qū)間內(nèi)的可導函數(shù)不一定有最值,若有唯一的極值,則此極值必是函數(shù)的最值 4利用導數(shù)求函數(shù)的最值方法六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月 日課 題生活中的優(yōu)化問題舉例教學內(nèi)容教材第36,37,38,39頁內(nèi)容。教學目標知識與技能:使利潤最大、用料最省、效率最高等優(yōu)化問題過程與方法:體會導數(shù)在解決實際問題中的作用情感態(tài)度和價值觀:提高將實際問題轉(zhuǎn)化為數(shù)學問題的能力教學重點利用導數(shù)解決生活中的一些優(yōu)化問題教學難點利
44、用導數(shù)解決生活中的一些優(yōu)化問題突破方法通過多種形式的練習,提高學生應用所學數(shù)學知識解決簡單實際問題的能力。教學過程一創(chuàng)設情景生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題通過前面的學習,我們知道,導數(shù)是求函數(shù)最大(小)值的有力工具這一節(jié),我們利用導數(shù),解決一些生活中的優(yōu)化問題二新課講授導數(shù)在實際生活中的應用主要是解決有關(guān)函數(shù)最大值、最小值的實際問題,主要有以下幾個方面:1、與幾何有關(guān)的最值問題;2、與物理學有關(guān)的最值問題;3、與利潤及其成本有關(guān)的最值問題;4、效率最值問題。解決優(yōu)化問題的方法:首先是需要分析問題中各個變量之間的關(guān)系,建立適當?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的
45、定義域,通過創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問題是建立適當?shù)暮瘮?shù)關(guān)系。再通過研究相應函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得以解決,在這個過程中,導數(shù)是一個有力的工具利用導數(shù)解決優(yōu)化問題的基本思路:建立數(shù)學模型解決數(shù)學模型作答用函數(shù)表示的數(shù)學問題優(yōu)化問題用導數(shù)解決數(shù)學問題優(yōu)化問題的答案三典例分析例1汽油的使用效率何時最高 我們知道,汽油的消耗量(單位:L)與汽車的速度(單位:km/h)之間有一定的關(guān)系,汽油的消耗量是汽車速度的函數(shù)根據(jù)你的生活經(jīng)驗,思考下面兩個問題:是不是汽車的速度越快,汽車的消耗量越大?“汽油的使用率最高”的含義是什么?分析:研究汽油的使用效率(單位:L/m)就是研究秋游消耗
46、量與汽車行駛路程的比值如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(單位:L),表示汽油行駛的路程(單位:km)這樣,求“每千米路程的汽油消耗量最少”,就是求的最小值的問題 通過大量的統(tǒng)計數(shù)據(jù),并對數(shù)據(jù)進行分析、研究,人們發(fā)現(xiàn),汽車在行駛過程中,汽油平均消耗率(即每小時的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間有如圖所示的函數(shù)關(guān)系從圖中不能直接解決汽油使用效率最高的問題因此,我們首先需要將問題轉(zhuǎn)化為汽油平均消耗率(即每小時的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間關(guān)系的問題,然后利用圖像中的數(shù)據(jù)信息,解決汽油使用效率最高的
47、問題 解:因為 這樣,問題就轉(zhuǎn)化為求的最小值從圖象上看,表示經(jīng)過原點與曲線上點的直線的斜率進一步發(fā)現(xiàn),當直線與曲線相切時,其斜率最小在此切點處速度約為90因此,當汽車行駛距離一定時,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此時的車速約為90從數(shù)值上看,每千米的耗油量就是圖中切線的斜率,即,約為 L例2磁盤的最大存儲量問題計算機把數(shù)據(jù)存儲在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長弧段可作為基本存儲單元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個基本單元通常被稱為比特(bit)。
48、為了保障磁盤的分辨率,磁道之間的寬度必需大于,每比特所占用的磁道長度不得小于。為了數(shù)據(jù)檢索便利,磁盤格式化時要求所有磁道要具有相同的比特數(shù)。問題:現(xiàn)有一張半徑為的磁盤,它的存儲區(qū)是半徑介于與之間的環(huán)形區(qū)域是不是越小,磁盤的存儲量越大?為多少時,磁盤具有最大存儲量(最外面的磁道不存儲任何信息)?解:由題意知:存儲量=磁道數(shù)每磁道的比特數(shù)。 設存儲區(qū)的半徑介于與R之間,由于磁道之間的寬度必需大于,且最外面的磁道不存儲任何信息,故磁道數(shù)最多可達。由于每條磁道上的比特數(shù)相同,為獲得最大存儲量,最內(nèi)一條磁道必須裝滿,即每條磁道上的比特數(shù)可達。所以,磁盤總存儲量它是一個關(guān)于的二次函數(shù),從函數(shù)解析式上可以判
49、斷,不是越小,磁盤的存儲量越大為求的最大值,計算令,解得當時,;當時,因此時,磁盤具有最大存儲量。此時最大存儲量為例3飲料瓶大小對飲料公司利潤的影響(1)你是否注意過,市場上等量的小包裝的物品一般比大包裝的要貴些?(2)是不是飲料瓶越大,飲料公司的利潤越大?【背景知識】:某制造商制造并出售球型瓶裝的某種飲料瓶子的制造成本是 分,其中 是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商可獲利 0.2 分,且制造商能制作的瓶子的最大半徑為 6cm問題:()瓶子的半徑多大時,能使每瓶飲料的利潤最大? ()瓶子的半徑多大時,每瓶的利潤最小?解:由于瓶子的半徑為,所以每瓶飲料的利潤是 令 解得
50、(舍去)當時,;當時,當半徑時,它表示單調(diào)遞增,即半徑越大,利潤越高;當半徑時, 它表示單調(diào)遞減,即半徑越大,利潤越低半徑為cm 時,利潤最小,這時,表示此種瓶內(nèi)飲料的利潤還不夠瓶子的成本,此時利潤是負值半徑為cm時,利潤最大換一個角度:如果我們不用導數(shù)工具,直接從函數(shù)的圖像上觀察,會有什么發(fā)現(xiàn)?有圖像知:當時,即瓶子的半徑為3cm時,飲料的利潤與飲料瓶的成本恰好相等;當時,利潤才為正值當時,為減函數(shù),其實際意義為:瓶子的半徑小于2cm時,瓶子的半徑越大,利潤越小,半徑為cm 時,利潤最小 四課堂練習1用總長為14.8m的鋼條制作一個長方體容器的框架,如果所制作的容器的底面的一邊比另一邊長0.
51、5m,那么高為多少時容器的容積最大?并求出它的最大容積(高為1.2 m,最大容積)5課本 練習五回顧總結(jié)建立數(shù)學模型1利用導數(shù)解決優(yōu)化問題的基本思路:解決數(shù)學模型作答用函數(shù)表示的數(shù)學問題優(yōu)化問題用導數(shù)解決數(shù)學問題優(yōu)化問題的答案2解決優(yōu)化問題的方法:通過搜集大量的統(tǒng)計數(shù)據(jù),建立與其相應的數(shù)學模型,再通過研究相應函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得到解決在這個過程中,導數(shù)往往是一個有利的工具。六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月 日課 題定積分的概念教學內(nèi)容教材第42,43,44,45,46,47,48,49,50,51,52頁內(nèi)容。教學目標知識
52、與技能:通過求曲邊梯形的面積和汽車行駛的路程,了解定積分的背景;過程與方法:借助于幾何直觀定積分的基本思想,了解定積分的概念,能用定積分定義求簡單的定積分;情感態(tài)度和價值觀:理解掌握定積分的幾何意義教學重點定積分的概念、用定義求簡單的定積分、定積分的幾何意義教學難點定積分的概念、定積分的幾何意義突破方法通過多種形式的練習,提高學生應用所學數(shù)學知識解決簡單實際問題的能力。教學過程一創(chuàng)設情景復習: 1 回憶前面曲邊梯形的面積,汽車行駛的路程等問題的解決方法,解決步驟:分割近似代替(以直代曲)求和取極限(逼近) 2對這四個步驟再以分析、理解、歸納,找出共同點二新課講授1定積分的概念一般地,設函數(shù)在區(qū)
53、間上連續(xù),用分點將區(qū)間等分成個小區(qū)間,每個小區(qū)間長度為(),在每個小區(qū)間上任取一點,作和式:如果無限接近于(亦即)時,上述和式無限趨近于常數(shù),那么稱該常數(shù)為函數(shù)在區(qū)間上的定積分。記為:,其中積分號,積分上限,積分下限,被積函數(shù),積分變量,積分區(qū)間,被積式。說明:(1)定積分是一個常數(shù),即無限趨近的常數(shù)(時)記為,而不是 (2)用定義求定積分的一般方法是:分割:等分區(qū)間;近似代替:取點;求和:;取極限:(3)曲邊圖形面積:;變速運動路程;變力做功2定積分的幾何意義從幾何上看,如果在區(qū)間上函數(shù)連續(xù)且恒有,那么定積分表示由直線和曲線所圍成的曲邊梯形(如圖中的陰影部分)的面積,這就是定積分的幾何意義。
54、說明:一般情況下,定積分的幾何意義是介于軸、函數(shù)的圖形以及直線之間各部分面積的代數(shù)和,在軸上方的面積取正號,在軸下方的面積去負號。分析:一般的,設被積函數(shù),若在上可取負值??疾旌褪讲环猎O于是和式即為陰影的面積陰影的面積(即軸上方面積減軸下方的面積)思考:根據(jù)定積分的幾何意義,你能用定積分表示圖中陰影部分的面積S嗎?3定積分的性質(zhì)根據(jù)定積分的定義,不難得出定積分的如下性質(zhì):性質(zhì)1;性質(zhì)2(定積分的線性性質(zhì));性質(zhì)3(定積分的線性性質(zhì));性質(zhì)4(定積分對積分區(qū)間的可加性)(1) ; (2) ; 說明:推廣: 推廣: 性質(zhì)解釋:性質(zhì)4性質(zhì)1三典例分析例1利用定積分的定義,計算的值。分析:令;()分割
55、把區(qū)間n等分,則第i個區(qū)間為:,每個小區(qū)間長度為:;()近似代替、求和取,則()取極限.例2計算定積分12yxO分析:所求定積分是所圍成的梯形面積,即為如圖陰影部分面積,面積為。即:思考:若改為計算定積分呢?改變了積分上、下限,被積函數(shù)在上出現(xiàn)了負值如何解決呢?(后面解決的問題)例計算定積分分析:利用定積分性質(zhì)有, 利用定積分的定義分別求出,就能得到的值。四課堂練習計算下列定積分1 2 3課本練習:計算的值,并從幾何上解釋這個值表示什么?五回顧總結(jié)1定積分的概念、用定義法求簡單的定積分、定積分的幾何意義六布置作業(yè)板書設計課后小記 主備人:迪力孜拉 輔備人:迪力孜拉 授課時間: 2016年 月
56、日課 題微積分基本定理教學內(nèi)容教材第57,58,59,60,61頁內(nèi)容。教學目標知識與技能:通過實例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茨公式求簡單的定積分。過程與方法:通過實例體會用微積分基本定理求定積分的方法。情感態(tài)度和價值觀:通過微積分基本定理的學習,體會事物間的相互轉(zhuǎn)化,對立統(tǒng)一的辯證關(guān)系,培養(yǎng)學生辯證唯物主義觀點,提高理性思維能力。教學重點通過探究變速直線運動物體的速度與位移的關(guān)系,使學生直觀了解微積分基本定理的含義,并能正確運用基本定理計算簡單的定積分教學難點了解微積分基本定理的含義突破方法通過多種形式的練習,提高學生應用所學數(shù)學知識解決簡單實際問題的能力。教學過程一,
57、復習:定積分的概念及用定義計算二,引入新課我們講過用定積分定義計算定積分,但其計算過程比較復雜,所以不是求定積分的一般方法。我們必須尋求計算定積分的新方法,也是比較一般的方法。變速直線運動中位置函數(shù)與速度函數(shù)之間的聯(lián)系設一物體沿直線作變速運動,在時刻t時物體所在位置為S(t),速度為v(t)(),則物體在時間間隔內(nèi)經(jīng)過的路程可用速度函數(shù)表示為。 另一方面,這段路程還可以通過位置函數(shù)S(t)在上的增量來表達,即 =而。 對于一般函數(shù),設,是否也有 若上式成立,我們就找到了用的原函數(shù)(即滿足)的數(shù)值差來計算在上的定積分的方法。注:1:定理 如果函數(shù)是上的連續(xù)函數(shù)的任意一個原函數(shù),則證明:因為=與都
58、是的原函數(shù),故 -=C() 其中C為某一常數(shù)。 令得-=C,且=0即有C=,故=+ =-=令,有此處并不要求學生理解證明的過程為了方便起見,還常用表示,即 該式稱之為微積分基本公式或牛頓萊布尼茲公式。它指出了求連續(xù)函數(shù)定積分的一般方法,把求定積分的問題,轉(zhuǎn)化成求原函數(shù)的問題,是微分學與積分學之間聯(lián)系的橋梁。 它不僅揭示了導數(shù)和定積分之間的內(nèi)在聯(lián)系,同時也提供計算定積分的一種有效方法,為后面的學習奠定了基礎。因此它在教材中處于極其重要的地位,起到了承上啟下的作用,不僅如此,它甚至給微積分學的發(fā)展帶來了深遠的影響,是微積分學中最重要最輝煌的成果。例1計算下列定積分:(1); (2)。解:(1)因為
59、,所以。(2)因為,所以。練習:計算解:由于是的一個原函數(shù),所以根據(jù)牛頓萊布尼茲公式有 =例2計算下列定積分:。由計算結(jié)果你能發(fā)現(xiàn)什么結(jié)論?試利用曲邊梯形的面積表示所發(fā)現(xiàn)的結(jié)論。解:因為,所以,. 可以發(fā)現(xiàn),定積分的值可能取正值也可能取負值,還可能是0: ( l )當對應的曲邊梯形位于 x 軸上方時(圖1.6一3 ) ,定積分的值取正值,且等于曲邊梯形的面積;圖1 . 6 一 3 ( 2 )當對應的曲邊梯形位于 x 軸下方時(圖 1 . 6 一 4 ) ,定積分的值取負值,且等于曲邊梯形的面積的相反數(shù); ( 3)當位于 x 軸上方的曲邊梯形面積等于位于 x 軸下方的曲邊梯形面積時,定積分的值為
60、0(圖 1 . 6 一 5 ) ,且等于位于 x 軸上方的曲邊梯形面積減去位于 x 軸下方的曲邊梯形面積 例3汽車以每小時32公里速度行駛,到某處需要減速停車。設汽車以等減速度=1.8米/秒2剎車,問從開始剎車到停車,汽車走了多少距離?微積分基本定理揭示了導數(shù)和定積分之間的內(nèi)在聯(lián)系,同時它也提供了計算定積分的一種有效方法微積分基本定理是微積分學中最重要的定理,它使微積分學蓬勃發(fā)展起來,成為一門影響深遠的學科,可以毫不夸張地說,微積分基本定理是微積分中最重要、最輝煌的成果三,課堂小結(jié):本節(jié)課借助于變速運動物體的速度與路程的關(guān)系以及圖形得出了特殊情況下的牛頓-萊布尼茲公式.成立,進而推廣到了一般的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版煤炭進出口居間服務不可撤銷合同4篇
- 2024預付款擔保形式創(chuàng)新與合同起草策略合同9篇
- 二零二五年新材料存貨質(zhì)押融資服務合同3篇
- 年度胃動力藥市場分析及競爭策略分析報告
- 2024-2025學年高中英語Unit3AtasteofEnglishhumourSectionⅤGuidedWriting如何寫幽默類故事性的記敘文教師用書教案新人教版必修4
- 二零二五年度農(nóng)業(yè)科技研發(fā)成果轉(zhuǎn)化合同范本集3篇
- 2025年度碼頭貨物裝卸機械租賃合同范本3篇
- 2024碎石原料生產(chǎn)設備采購合同
- 2025年度鋁型材電商平臺合作服務合同4篇
- 2024版招生合作服務協(xié)議
- 專利補正書實例
- 《動物生理學》課程思政優(yōu)秀案例
- 高分子材料完整版課件
- DB37∕T 5118-2018 市政工程資料管理標準
- 大氣紅色商務展望未來贏戰(zhàn)集團年會PPT模板課件
- T∕CAWA 002-2021 中國疼痛科專業(yè)團體標準
- 住宅工程公共區(qū)域精裝修施工組織設計(217頁)
- 冷卻塔技術(shù)要求及質(zhì)量標準介紹
- (完整版)項目工程款收款收據(jù)
- 井點降水臺班記錄表
- 奇瑞汽車4S店各類表格模板
評論
0/150
提交評論