土木工程畢業(yè)建筑設(shè)計(jì)_第1頁
土木工程畢業(yè)建筑設(shè)計(jì)_第2頁
土木工程畢業(yè)建筑設(shè)計(jì)_第3頁
土木工程畢業(yè)建筑設(shè)計(jì)_第4頁
土木工程畢業(yè)建筑設(shè)計(jì)_第5頁
已閱讀5頁,還剩81頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、 PAGE 86 建筑設(shè)計(jì)建筑設(shè)計(jì)是在總體規(guī)劃的前提下,根據(jù)任務(wù)書的要求綜合考慮基地環(huán)境,使用功能,結(jié)構(gòu)施工,材料設(shè)備,建筑經(jīng)濟(jì)及建筑藝術(shù)等問題。著重解決建筑物內(nèi)部各種使用功能和使用空間的合理安排,建筑與周圍環(huán)境,與各種外部條件的協(xié)調(diào)配合,內(nèi)部和外表的藝術(shù)效果。各個(gè)細(xì)部的構(gòu)造方式等。創(chuàng)造出既符合科學(xué)性又具有藝術(shù)的生產(chǎn)和生活環(huán)境。建筑設(shè)計(jì)在整個(gè)工程設(shè)計(jì)中起著主導(dǎo)和先行的作用,除考慮上述各種要求以外,還應(yīng)考慮建筑與結(jié)構(gòu),建筑與各種設(shè)備等相關(guān)技術(shù)的綜合協(xié)調(diào),以及如何以更少的材料,勞動(dòng)力,投資和時(shí)間來實(shí)現(xiàn)各種要求,使建筑物做到適用,經(jīng)濟(jì),堅(jiān)固,美觀,這要求建筑師認(rèn)真學(xué)習(xí)和貫徹建筑方針政策,正確學(xué)習(xí)掌握

2、建筑標(biāo)準(zhǔn),同時(shí)要具有廣泛的科學(xué)技術(shù)知識(shí)。建筑設(shè)計(jì)包括總體設(shè)計(jì)和個(gè)體設(shè)計(jì)兩部分。1 設(shè)計(jì)任務(wù)本設(shè)計(jì)的主要內(nèi)容是,設(shè)計(jì)上航國際酒店客房部分,客房屬于居住類建筑。作為一個(gè)居住空間設(shè)計(jì),要在平面規(guī)劃中自始至終遵循實(shí)用、功能需求和人性化管理充分結(jié)合的原則。在設(shè)計(jì)中,既結(jié)合客房需求和酒店管理流程,科學(xué)合理的劃分職能區(qū)域,。材料運(yùn)用簡潔,大方,耐磨,環(huán)保的現(xiàn)代材料,在照明采光上使用全局照明,能滿足酒店客房功能的需要.經(jīng)過精心設(shè)計(jì),在滿足各種客房需要的同時(shí),又簡潔,大方,美觀,能充分體現(xiàn)出企業(yè)的形象與現(xiàn)代感.2 設(shè)計(jì)要求建筑法規(guī)、規(guī)范和一些相應(yīng)的建筑標(biāo)準(zhǔn)是對(duì)該行業(yè)行為和經(jīng)驗(yàn)的不斷總結(jié),具有指導(dǎo)意義,尤其是一些

3、強(qiáng)制性規(guī)范和標(biāo)準(zhǔn),具有法定意義。建筑設(shè)計(jì)除了應(yīng)滿足相關(guān)的建筑標(biāo)準(zhǔn)、規(guī)范等要求之外,原則上還應(yīng)符合以下要求:(1) 滿足建筑功能要求:(2) 符合所在地規(guī)劃發(fā)展的要求并具有良好的視覺效果;(3) 采用合理的技術(shù)措施;(4) 提供在投資計(jì)劃所允許的經(jīng)濟(jì)范疇內(nèi)運(yùn)作的可行性。3 氣象條件建設(shè)地區(qū)的溫度、濕度、日照、雨雪、風(fēng)向、風(fēng)速等是建筑設(shè)計(jì)的重要依據(jù),例如:炎熱地區(qū)的建筑應(yīng)考慮隔熱、通風(fēng)、遮陽、建筑處理較為開敞;在確定建筑物間距及朝向時(shí),應(yīng)考慮當(dāng)?shù)厝照涨闆r及主要風(fēng)向等因素。4 地形、地質(zhì)及地震烈度基地的地形,地質(zhì)及地震烈度直接影響到房屋的平面組織結(jié)構(gòu)選型、建筑構(gòu)造處理及建筑體型設(shè)計(jì)等。地震烈度,表示

4、當(dāng)發(fā)生地震時(shí),地面及建筑物遭受破壞的程度。烈度在6度以下時(shí),地震對(duì)建筑物影響較小,一般可不做抗震計(jì)算,9度以上地區(qū),地震破壞力很大,一般應(yīng)尺量避免在該地區(qū)建筑房屋,建筑物抗震設(shè)防的重點(diǎn)時(shí)7、8、9度地震烈度的地區(qū)。5 水文水文條件是指地下水位的高低及地下水的性質(zhì),直接影響到建筑物基礎(chǔ)及地下室。一般應(yīng)根據(jù)地下水位的高低及底下水位性質(zhì)確定是否在該地區(qū)建筑房屋或采用相應(yīng)的防水和防腐措施。6建筑設(shè)計(jì)文件的內(nèi)容及要求建筑初步設(shè)計(jì)內(nèi)容:繪制“3平2立1剖”:“3平”即1個(gè)底層平面圖,1個(gè)樓層平面圖,加1個(gè)屋頂平面圖;“2立”指1個(gè)南側(cè)或北側(cè)立面圖,加1個(gè)東側(cè)或西側(cè)立面圖;“1剖”必須剖到樓梯。 建筑設(shè)計(jì)文

5、件要求:以上圖紙均需達(dá)到施工圖深度,弄清建筑平面、立面和剖面之間的關(guān)系,熟悉建筑施工圖的表達(dá)方式及深度要求,掌握常用的建筑構(gòu)造措施等。建議用2號(hào)圖繪制,繪圖比例、布局和張數(shù)自定,以表達(dá)清楚且符合制圖習(xí)慣為原則。 結(jié)構(gòu)設(shè)計(jì)第一章基本設(shè)計(jì)資料11 設(shè)計(jì)資料工程名稱:上杭客家緣國際酒店客房A1區(qū)設(shè)計(jì)建設(shè)地點(diǎn):福建上杭市工程概況:共4層,底層高6.05m,其余層高4.4m。室內(nèi)外高差為0.45mm,底層室內(nèi)設(shè)計(jì)標(biāo)高0.000。基本風(fēng)壓:0.13kN/m2基本雪壓:0.45kN/m2抗震設(shè)防:按7度抗震設(shè)防烈度進(jìn)行抗震設(shè)計(jì),第一設(shè)計(jì)分組,地震加速度0.1g。12 結(jié)構(gòu)設(shè)計(jì)的一般原則121 結(jié)構(gòu)設(shè)計(jì)目的工

6、程設(shè)計(jì)是工程建設(shè)的首要環(huán)節(jié),是整個(gè)工程的靈魂。先進(jìn)合理的設(shè)計(jì)對(duì)于改建、擴(kuò)建、新建項(xiàng)目縮短工期、節(jié)約投資、提高經(jīng)濟(jì)效益起著關(guān)鍵作用,使項(xiàng)目達(dá)到安全、適用、經(jīng)濟(jì)、美觀的要求。因而建筑結(jié)構(gòu)設(shè)計(jì)的基本目的就是要在一定經(jīng)濟(jì)條件下賦予結(jié)構(gòu)以適當(dāng)?shù)目煽慷?,使結(jié)構(gòu)在預(yù)定的基準(zhǔn)期內(nèi)能滿足設(shè)計(jì)所預(yù)期的各種功能要求。122 結(jié)構(gòu)設(shè)計(jì)的一般原則為了達(dá)到建筑設(shè)計(jì)的基本目的,結(jié)構(gòu)設(shè)計(jì)中應(yīng)符合以下一般原則:符合設(shè)計(jì)規(guī)范;選擇合理的結(jié)構(gòu)設(shè)計(jì)方案;減輕結(jié)構(gòu)自重;采用先進(jìn)技術(shù)。13 結(jié)構(gòu)選型131 結(jié)構(gòu)體系選型對(duì)于一般多層民用建筑,根據(jù)使用和工藝要求、材料供應(yīng)情況和施工技術(shù)條件,常選用的結(jié)構(gòu)形式有混合結(jié)構(gòu)、鋼筋混凝土框架結(jié)構(gòu)和框

7、架剪力墻結(jié)構(gòu)等結(jié)構(gòu)體系。由于混合結(jié)構(gòu)整體性差,難于滿足大空間的使用要求,而框架剪力墻結(jié)構(gòu)多用于1025層的高層建筑。而框架結(jié)構(gòu)強(qiáng)度高、結(jié)構(gòu)自重輕,可以承受較大樓面荷載,在水平作用下具有較大的延性。此外框架結(jié)構(gòu)平面布置靈活,能設(shè)置大空間,易于滿足建筑功能要求。故該五層辦公樓選用框架結(jié)構(gòu)。132 框架施工方法鋼筋混凝土框架結(jié)構(gòu)按施工方法不同,有現(xiàn)澆式、裝配式和整體裝配式三種。現(xiàn)澆式框架的全部構(gòu)件都在現(xiàn)場整體澆筑,其整體性和抗震性能好,能較好的滿足使用要求。故框架采用現(xiàn)澆施工方法。133 其他結(jié)構(gòu)選型1. 屋面結(jié)構(gòu):采用現(xiàn)澆鋼筋混凝土肋形屋蓋,屋面板厚120mm。2. 樓面結(jié)構(gòu):采用現(xiàn)澆鋼筋混凝土肋

8、形樓蓋,露面板厚120mm。3. 樓梯結(jié)構(gòu):采用鋼筋混凝土板式樓梯。4. 過梁:門窗過梁均采用鋼筋混凝土梁。5. 墻基礎(chǔ):因持力層不太深,承載力高,采用自乘墻基大放腳。6. 基礎(chǔ):因基礎(chǔ)持力層不太深,地基承載力高,采用鋼筋混凝土柱下獨(dú)立基礎(chǔ)。結(jié)構(gòu)布置及計(jì)算簡圖 21 簡化假定建筑物是復(fù)雜的空間結(jié)構(gòu)體系,要精確地按照三維空間結(jié)構(gòu)來進(jìn)行內(nèi)力和位移分析十分困難。為簡化計(jì)算,對(duì)結(jié)構(gòu)體系引入以下基本假定:(1) 在正常設(shè)計(jì)、正常施工和正常使用的條件下,結(jié)構(gòu)物在設(shè)計(jì)基準(zhǔn)期內(nèi)處于彈性工作階段,其內(nèi)力和位移均按彈性方法計(jì)算;(2) 樓面(或屋面)在自身平面內(nèi)的剛度無限大,在平面外的剛度很小,可忽略不計(jì)。22

9、計(jì)算單元多層框架結(jié)構(gòu)是由縱、橫向框架結(jié)構(gòu)組成的空間結(jié)構(gòu)體系,在豎向荷載作用下,各個(gè)框架之間的受力影響較小。本設(shè)計(jì)中取KJ2作為計(jì)算單元 ,如圖21所示:23 計(jì)算簡圖現(xiàn)澆多層框架結(jié)構(gòu)設(shè)計(jì)計(jì)算模型是以梁、柱截面幾何軸線來確定,并認(rèn)為框架柱在基礎(chǔ)頂面為固接,框架各節(jié)點(diǎn)縱、橫向均為剛接。一般情況下,取框架梁、柱截面幾何軸線之間的距離作為框架的跨度和柱高度。底層柱高從基礎(chǔ)頂面算至二層樓面,基礎(chǔ)頂面標(biāo)高根據(jù)地質(zhì)條件、室內(nèi)外高差定為0.45m,二層樓面標(biāo)高為4.4m,故底層柱高為7m。其余各層柱高為樓層高4.4m。由此可繪出框架計(jì)算簡圖,如圖22所示: 圖22 框架結(jié)構(gòu)計(jì)算簡圖24 梁柱截面尺寸及慣性矩多

10、層框架結(jié)構(gòu)是超靜定結(jié)構(gòu),在計(jì)算內(nèi)力前必須先確定桿件的截面形狀、尺寸和慣性矩。1 初估構(gòu)件截面尺寸及線剛度(1)梁截面尺寸 AB梁 l=9000mm, 取h=800mm 取b=300mm 則取AB梁截面尺寸為:hb=300mm800mmBC梁l=2100mm, 考慮剛度因素,取為方便施工,取 則取BC梁截面尺寸為:hb=300mm500mm CD梁 l=5000mm, 取h=600mm 取b=300mm 則取CD梁截面尺寸為:hb=300mm600mm 橫向次梁 l=9000mm 取h=700mm 取b=30mm 則取橫向次梁截面尺寸為: hb=300mm700mm (2). 柱截面尺寸 底層柱

11、尺寸 按軸壓比要求計(jì)算,由公式 : 式中: 軸壓比取0.9;軸壓比增大系數(shù),本設(shè)計(jì)取=1.2; F柱的荷載面積; 單位建筑面積上重力荷載值,近似取12-15 kN/m2; n驗(yàn)算截面以上樓層層數(shù)。 對(duì)于頂層中柱: 如取柱截面為正方形,則其邊長為510.69。 根據(jù)以上計(jì)算結(jié)果,并考慮其他因素,本設(shè)計(jì)中所有柱子截面尺寸都取600mm600mm。 非計(jì)算單元的內(nèi)梁截面尺寸初估方法如上,計(jì)算從略。2. 框架梁、柱線剛度計(jì)算 由于現(xiàn)澆樓面可以作為梁的有效翼緣,增大梁的有效剛度,減少框架側(cè)移??紤]這一有利因素,邊框架梁取,對(duì)中框架梁取。(為梁矩形截面慣性矩) AB梁: BC梁: CD梁: 柱: 底層 中

12、間層 相對(duì)線剛度:取則其余各桿件相對(duì)線剛度為: 梁: AB梁 BC梁 CD梁 底層柱 框架梁、柱的相對(duì)線剛度如圖23所示,將作為計(jì)算節(jié)點(diǎn)桿端彎矩分配系數(shù)的依據(jù)。 圖23 梁柱相對(duì)線剛度圖第三章 重力荷載代表值的計(jì)算31 恒載標(biāo)準(zhǔn)值計(jì)算1. 屋面防水層(剛性):30mm厚C20細(xì)石混凝土防水 1.00kN/m2 防水層(柔性):三氈四油鋪小石子 0.40kN/m2找平層:15mm厚水泥砂漿 0.01520 kN/m3=0.30kN/m2找坡層:平均40mm厚水泥焦渣找坡 0.04014 kN/m3=0.56kN/m2保溫層:60mm厚1:10水泥膨脹珍珠巖 0.06012 kN/m3=0.72k

13、N/m2結(jié)構(gòu)層:120mm厚現(xiàn)澆鋼筋混凝土板 0.12025 kN/m3=3.00kN/m2抹灰層:10mm厚混合砂漿 0.01017 kN/m3=0.17 kN/m2合計(jì) 6.15kN/m22. 各層樓面(含走廊)水磨石地面(10mm厚面層,20mm厚水泥砂漿打底) 0.65kN/m2結(jié)構(gòu)層:120mm厚現(xiàn)澆鋼筋混凝土板 0.12025 kN/m3=3.00kN/m2抹灰層:10mm厚混合砂漿 0.01017 kN/m3=0.17kN/m2合計(jì) 3.82kN/m2 3. 各梁自重 AB梁hb=300mm800mm梁自重: 0.3(0.8-0.12)25 kN/m3=5.1kN/m抹灰層:10

14、mm厚混合砂漿 0.01(0.8-0.12+0.3/2) 217 kN/m3=0.28kN/m 合計(jì) 4.60kN/m 橫向次梁hb=300mm700mm梁自重: 0.3(0.7-0.12)25 kN/m3=4.35kN/m抹灰層:10mm厚混合砂漿 0.01(0.7-0.12+0.25/2) 217 kN/m3=0.25kN/m 合計(jì) 4.60kN/m BC梁hb=300mm500mm梁自重: 0.3(0.5-0.12)25 kN/m3=2.85kN/m抹灰層:10mm厚混合砂漿 0.01(0.5-0.12+0.3/2) 217 kN/m3=0.18kN/m 合計(jì) 3.03kN/m CD梁h

15、b=300mm600mm梁自重: 0.3(0.6-0.12)25 kN/m3=3.0kN/m抹灰層:10mm厚混合砂漿 0.01(0.6-0.12+0.3/2) 217 kN/m3=0.21kN/m 合計(jì) 3.21kN/m 4. 柱自重 hb=600mm600mm柱自重: 0.60.625 kN/m3=9kN/m抹灰層:10mm厚混合砂漿 0.01(0.6+0.6) 217 kN/m3=0.41kN/m 合計(jì) 9.41kN/m 5. 外縱墻自重 標(biāo)準(zhǔn)層縱墻: (4.4-0.8)(9-0.5)-32.12 0.248 kN=33.86kN鋁合金窗(32.1): 32.120.35 kN=4.41

16、kN貼瓷磚外墻面: 4.4(9-0.6)-32.12 0.5 kN=12.18kN水泥粉刷內(nèi)墻面: 4.4(9-0.6)-32.12 0.36 kN=8.77kN 合計(jì) 59.85kN 底層縱墻: (6.05-0.8)(9-0.6)-32.12 0.248 kN=60.48kN鋁合金窗(1.51.5): 32.120.35 kN=4.41kN貼瓷磚外墻面: 6.05(9-0.6)-32.12 0.5 kN=19.11kN水泥粉刷內(nèi)墻面: 6.05(9-0.6)-32.12 0.36 kN=13.76kN 合計(jì) 84.00kN6. 內(nèi)縱墻自重 標(biāo)準(zhǔn)層縱墻: (4.4-0.8)(9-0.6)-0.

17、92.12 0.248 kN=.49.7kN門(hb=0.92.1): 5 kN=0.65kN粉刷墻面: (4.4-0.8)(9-0.6)-0.92.12 0.362 kN=18.63kN 合計(jì) 68.99kN/m 底層 縱墻: (6.05-0.8)(9-0.6)-0.92.12 0.248 kN=77.41kN門(hb=0.92.1): 5 kN=0.65kN粉刷墻面: (6.05-0.8)(9-0.5)-0.92.12 0.362 kN=27.17kN 合計(jì) 105.23kN/m 7. 內(nèi)隔墻自重AB跨標(biāo)準(zhǔn)層墻重: (4.4-0.7)(9-0.6)0

18、.28 kN=50.32kN粉刷墻面: (4.4-0.7)(9-0.6) 0.362 kN=22.6kN 合計(jì) 72.92kN 底層墻重: (7-0.7)(9-0.6)0.28 kN=72.76kN粉刷墻面: (6.05-0.7)(9-0.6) 0.362 kN=32.74kN 合計(jì) 105.50kN CD跨 標(biāo)準(zhǔn)層墻重: (4.4-0.6)(5-0.6)0.28 kN=26.75kN粉刷墻面: (4.4-0.7)(9-0.6) 0.362 kN=12.04kN 合計(jì) 38.79kN 底層墻重: (7-0.-0.6)(5-0.6)0.28 kN=45.06kN粉刷墻面: (6.05-0.6)(

19、5-0.6) 0.362 kN=17.27kN 合計(jì) 62.33kN 3.2 活荷載標(biāo)準(zhǔn)值計(jì)算1. 屋面和樓面活荷載標(biāo)準(zhǔn)值上人屋面:2.0kN/m2樓面:辦公室:2.0kN/m2 ;走廊:2.0kN/m22.雪荷載:基本雪壓:0.45kN/m2雪荷載標(biāo)準(zhǔn)值:屋面活荷載和雪荷載不同時(shí)考慮,二者中取大值。33 豎向荷載下框架受荷總圖板傳至梁上的三角形或梯形荷載為均布荷載,荷載的傳遞示意圖,如圖31所示:圖3-1 荷載傳遞示意圖屋面板傳荷載:1. A-B軸間框架梁恒載: 活載: 樓面板傳荷載:荷載傳遞示意圖如圖24所示恒載: 活載: 梁自重: 5.38 kN/m AB軸間框架梁均布荷載為:屋面梁:恒

20、載=梁自重+板傳荷載 = 5.38+23.7=29.04kN/m 活載=板傳荷載 =7.7kN/m樓面梁:恒載=梁自重+板傳荷載 =5.38+14.72=20.1 活載=板傳荷載 =7.7kN/m2. BC軸間框架梁均布荷載為:梁自重: 3.03kN/m屋面梁:恒載=梁自重 =3.03kN/m 活載=0樓面梁:恒載=梁自重 =3.03kN/m 活載=0CD軸間框架梁均布荷載為:屋面板傳荷載恒載: 活載: 樓面板傳荷載:恒載: 活載: 梁自重: 3.21kN/m CD軸間框架梁均布荷載為:屋面梁:恒載=梁自重+板傳荷載 = 3.21+19.2=22.41kN/m 活載=板傳荷載 =6.25kN/

21、m樓面梁:恒載=梁自重+板傳荷載 =3.21+11.9=15.11kN/m 活載=板傳荷載 =6.25kN/m4.A軸柱縱向集中荷載的計(jì)算頂層柱:女兒墻自重(做法:墻高1100mm,混凝土壓頂100mm)頂層柱恒載=女兒墻+縱梁自重+板傳荷載 頂層柱活載=板傳荷載 標(biāo)準(zhǔn)層柱恒載=外縱墻自重+縱梁自重+板傳荷載+橫隔墻 頂層柱活載=板傳荷載 5. B軸柱縱向集中荷載的計(jì)算頂層柱恒載=縱梁自重+板傳荷載 頂層柱活載=板傳荷載 標(biāo)準(zhǔn)層柱恒載=內(nèi)縱墻自重+縱梁自重+板傳荷載+橫隔墻標(biāo)準(zhǔn)層柱活載=板傳荷載 6、C軸柱縱向集中荷載的計(jì)算 頂層柱恒載=縱梁自重+板傳荷載 頂層柱活載=板傳荷載 標(biāo)準(zhǔn)層柱恒載=

22、內(nèi)縱墻自重+縱梁自重+板傳荷載+橫隔墻標(biāo)準(zhǔn)層柱活載=板傳荷載 D軸柱縱向集中荷載計(jì)算 頂層柱恒載=女兒墻自重+外縱梁自重+板傳荷載頂層柱活載=板傳荷載 標(biāo)準(zhǔn)層柱恒載=外縱墻自重+縱梁自重+板傳荷載+橫隔墻標(biāo)準(zhǔn)層柱活載=板傳荷載由上可作出框架在豎向荷載作用下的受荷總圖,如圖32所示:圖32 豎向荷載作用下受荷總圖 第四章 風(fēng)荷載計(jì)算4.1荷載計(jì)算作用在屋面梁和摟面梁節(jié)點(diǎn)處的集中風(fēng)荷載標(biāo)準(zhǔn)值:為了簡化計(jì)算,通常將計(jì)算單元范圍內(nèi)外墻面的分布荷載化為等量的作用于樓面的集中風(fēng)荷載。式中:基本風(fēng)壓 風(fēng)壓高度變化系數(shù)。因建設(shè)地點(diǎn)處于大城市郊區(qū),地面粗糙程度為B類; 風(fēng)荷載體型系數(shù),查表取=1.3; 風(fēng)振系數(shù)

23、。由于結(jié)構(gòu)高度小于30m,且高寬比19.25/32.2=0.591.5,則取=1.0; 下層柱高; 上層柱高,頂層取女兒墻高度的兩倍; B計(jì)算單元迎風(fēng)面寬度(B=9m)計(jì)算過程見表31表41 風(fēng)荷載標(biāo)準(zhǔn)值計(jì)算層數(shù)離地高度419.251.0 1.3 0.825 0.134.4 2.44.27 314.851.0 1.3 0.7 4.95210.451.0 1.3 0.740.134.4 4.4 4.95 16.051.0 1.3 0.740.136.05 4.4 5.88 荷載作用如圖4-1所示 圖4-1 風(fēng)荷載作用示意圖4.2 風(fēng)荷載側(cè)驗(yàn)算4.2.1. 側(cè)移剛度見表32和

24、表33表42 橫向24層D值的計(jì)算構(gòu)件名稱A軸柱0.36716724B軸柱0.54224725C軸柱0.51123311D軸柱0.30613960表43 橫向底層D值的計(jì)算構(gòu)件名稱A軸柱0.6099244B軸柱0.74011232C軸柱0.71810899D軸柱0.55984854.2.2 風(fēng)荷載下框架位移計(jì)算水平荷載作用下框架的層間側(cè)移可按下式計(jì)算:式中: 第j層的剪力; 第j層所有柱的抗側(cè)剛度之和; 第j層的層間位移。第一層的層間位移值求出以后,就可以計(jì)算各樓板標(biāo)高處的側(cè)移值的頂點(diǎn)側(cè)移值,各層樓板標(biāo)高處的側(cè)移值應(yīng)該是該層以下各層層間側(cè)移之和,頂點(diǎn)側(cè)移是所有各層層間側(cè)移之和。j層側(cè)移 頂點(diǎn)側(cè)

25、移 框架在風(fēng)荷載下側(cè)移的計(jì)算見表24,如下:表24 框架在風(fēng)荷載下側(cè)移計(jì)算層號(hào)44.274.27787200.0000570.00001334.959.22787200.0001230.000027924.9514.17787200.0001890.000042915.8820.05398600.0005010.0000828=0.00087側(cè)移驗(yàn)算:層間最大側(cè)移值為: 0.00008281/550,滿足要求頂點(diǎn)側(cè)移 =0.00087m且 u/H=1/7832 750 m/s, 360m/s to 750 m/s, 180 m/s to 360 m/s, and 180 m/s, respec

26、tively. The ground motion data are chosen from different destructive earthquakes around the world earthquake name, date of earthquake, data source, record name, peak ground accelerations (pga) for the components, effective durations and fault types for each data are presented in the Table1., respect

27、ively.The peak ground accelerations are in the range 0.046 to 0.395g, where g is acceleration due to gravity. All ground motion data are recorded in near-field region as in maximum 20 km distance.DESCRIPTION OF THE FRAME STRUCTURES3, 5, 8 and 15-story RC frame structures with typical cross-sections

28、and steel reinforcements are shown in Figure 1. The reinforced concrete frame structures have been designed according to the rules of the Turkish Code. The structures have been considered as an important class 1 with subsoil type of Z1 and in seismic region 1. The dead, live and seismic loads have b

29、een taken account during design.All reinforced concrete frame structures consist three-bay frame, spaced at 800 cm. The story height is 300 cm. The columns are assumed as fixed on the ground. Yield strength of the steel reinforcements is 22 kN/cm2 and compressive strength of concrete is 1.6kN/cm2.Th

30、e first natural period of the 3-story frame structure is computed 0.54 s. The cross-section of all beams in this frame is rectangular-shapes with 25cm width and 50cm height. The cross-section of all columns is 30cmx30cm. The first natural period of 5-story frame structure is 0.72 s and the cross-sec

31、tion of beams is 25cm width and 50cm height similar to 3-story frame. Cross-section of columns at the first three stories is 40cmx40cm and at the last two stories, it is 30cmx30cm. The eight-story and 15-story frame structures have natural period of 0.90 s and 1.20 s. The cross section of beams for

32、both frame structures is 25cmx55cm. The 8-story frame structure has 50cmx50cm columns for the first five stories and 40cmx40cm for the last three stories. The cross section of columns for first eight stories in the 15-story frame structures is 80cmx80cm and at the last seven stories, it is 60cmx60cm

33、.NONLINEAR STATIC PUSHOVER ANALYSIS OF FRAME STRUCTURESFor low performance levels, to estimate the demands, it is required to consider inelastic behavior of the structure. Pushover analysis is used to identify the seismic hazards, selection of the performance levels and design performance objectives

34、. In Pushover analysis, applying lateral loads in patterns that represent approximately the relative inertial forces generated at each floor level and pushing the structure under lateral loads to displacements that are larger than the maximum displacements expected in design earthquakes (Li, Y.R., 1

35、996). The pushover analysis provides a shear vs. displacement relationship and indicates the inelastic limit as well as lateral load capacity of the structure. The changes in slope of this curve give an indication of yielding of various structural elements. The main aim of the pushover analysis is t

36、o determine member forces and global and local deformation capacity of a structure. The information can be used to assess the integrity of the structure.After designing and detailing the reinforced concrete frame structures, a nonlinear pushover analysis is carried out for evaluating the structural

37、seismic response. For this purpose the computer program Drain 2D has been used. Three simplified loading patterns; triangular, (IBC, k=1), (IBC, k=2) and rectangular, where k is an exponent related to the structure period to define vertical distribution factor, are used in the nonlinear static pusho

38、ver analysis of 3, 5, 8 and 15-story RC frame structures.Load criteria are based on the distribution of inertial forces of design parameters. The simplified loading patterns as uniform distribution, triangular distribution and IBC distribution, these loading patterns are the most common loading para

39、meters.Vertical Distribution of Seismic Forces: (1) (2)where:Cvx= Vertical distribution factorV = Total design lateral force or shear at the base of structurewi and wx = The portion of the total gravity load of the structurehi and hx = The height from the basek = An exponent related to the structure

40、 periodIn addition these lateral loadings, frames are subjected live loads and dead weights. P- effects have been taken into the account during the pushover analyses. The lateral force is increased for 3, 5 and 8-story frames until the roof displacement reached 50 cm and 100cm for15-story frame. Bea

41、m and column elements are used to analyze the frames. The beams are assumed to be rigid in the horizontal plane. Inelastic effects are assigned to plastic hinges at member ends. Strain-hardening is neglected in all elements. Bilinear moment-rotation relationship is assumed for both beam and column m

42、embers. Axial load-Moment, P-M, interaction relation, suggested by ACI 318-89, is used as yielding surface of column elements. Inertial moment of cracked section, Icr, is used for both column and beam members during analyses. Icr is computed as half of the gross moment of inertia, Ig.The results of

43、the pushover analyses are presented in Figures 2 to 5. The pushover curves are shown for three distributions, and for each frame structures. The curves represent base shear-weight ratio versus story level displacements for uniform, triangular and IBC load distribution. Shear V was calculated by summ

44、ing all applied lateral loads above the ground level, and the weight of the building W is the summation of the weights of all floors. Beside these, these curves represent the lost of lateral load resisting capacity and shear failures of a column at the displacement level. The changes in slope of the

45、se curves give an indication of yielding of various structural elements, first yielding of beam, first yielding of column and shear failure in the members. By the increase in the height of the frame structures, first yielding and shear failure of the columns is experienced at a larger roof displacem

46、ents (Figures 2-5.) and rectangular distribution always give the higher base shear-weight ratio comparing to other load distributions for the corresponding story displacement (horizontal displacement).NONLINEAR DYNAMIC TIME HISTORY ANALYSIS OF FRAME STRUCTURESAfter performing pushover analyses, nonl

47、inear dynamic time history analyses have been employed to the four different story frame structures. These frames are subjected live and dead weights. Also P- effects are under consideration as in pushover analysis. For time history analysis P- effects have been taken into the account. Finite elemen

48、t procedure is employed for the modeling of the structures during the nonlinear dynamic time history analyses. Drain 2D has been used for nonlinear time history analysis and modeling. The model described for pushover analyses has been used for the time history analyses. Mass is assumed to be lumped

49、at the joints.The frames are subjected to 50 earthquake ground motions, which are recorded during Anza (Horse Cany), Parkfield, Morgan Hill, Kocaeli, Coyota Lake, N. Palm Springs, Northridge, Santa Barbara, Imperial Valley, Cape Mendocino, Kobe, Central California, Lytle Creek, Whittier Narrows, Hol

50、lister Westmoreland, Landers, Livermor and Cape Mendocino earthquakes, for the nonlinear dynamic time history analyses. These data are from different site classes as A, B, C and D.The selected earthquake ground motions have different frequency contents and peak ground accelerations.The ground motion

51、 data are chosen from near-field region to evaluate the response of the frame structures in this region and comparison of them with pushover analyses results. The results of nonlinear time history analysis for 3, 5, 8 and15-story frame structures are presented in Figure 6. Pushover and nonlinear tim

52、e history analyses results are compared to for specific natural period for four different frame structure and for each load distributions; rectangular, triangular and IBC (k=2).CONCLUSIONSAfter designing and detailing the reinforced concrete frame structures, a nonlinear pushover analysis and nonlin

53、ear dynamic time history analysis are carried out for evaluating the structural seismic response for the acceptance of load distribution for inelastic behavior. It is assumed for pushover analysis that seismic demands at the target displacement are approximately maximum seismic demands during the ea

54、rthquake.According to Figures 2, 3, 4 and 5, for higher story frame structures, first yielding and shear failure of the columns is experienced at the larger story displacements and rectangular distribution always give the higher base shear-weight ratio comparing to other load distributions for the c

55、orresponding story displacement.As it is presented in Figure 6, nonlinear static pushover analyses for IBC (k=2), rectangular, and triangular load distribution and nonlinear time history analyses results for the chosen ground motion data (all of them are near-field data) are compared. Pushover curve

56、s do not match with nonlinear dynamic time history analysis results especially for higher story reinforced pushover analyses results for rectangular load distribution estimate maximum seismic demands during the given earthquakes more reasonable than the other load distributions, IBC (k=2), and trian

57、gular.REFERENCES1. ATC-40 (1996), “Seismic evaluation and Retrofit of Concrete Buildings”, Vol.1, Applied Technology Council, Redwood City, CA.2. FEMA 273 (1997). “NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency”, Washington D.C.3. IBC (2000) “Intern

58、ational Building Code”.4. Prakash, V., Powell, G., Campbell, S. (1993), DRAIN 2D User Guide V 1.10, University of California at Berkeley, CA.5. Li, Y.R. (1996), “Non-Linear Time History And Pushover Analyses for Seismic Design and Evaluation” PhD Thesis, University of Texas, Austin, TX.6. Vision 200

59、0 Committee (1995). Structural Engineering Association of California, CA.靜力彈塑性分析法在側(cè)向荷載分布方式下的評(píng)估研究Armagan KORKMAZ1, Ali SARI21訪問學(xué)者,土木工程學(xué)院, 得克薩斯大學(xué), 奧斯汀, TX 78712, PH: 512-232-9216; 2博士, 土木工程學(xué)院, 得克薩斯大學(xué), 奧斯汀, TX 78712, PH: 512-232-9216; ali_摘要:這項(xiàng)研究的目的是通過彈塑性分析法和非線性

60、時(shí)程分析法來評(píng)估框架結(jié)構(gòu)的性能或多種荷載形式及自然周期的多樣性。彈塑性分析法的荷載分布狀態(tài)有三角形、IBC(k=2),和矩形。在這個(gè)研究中四種典型的鋼筋混凝土框架結(jié)構(gòu)被采用,它們分別有四種不同的自然周期。非線性時(shí)程分析法是計(jì)算地震的最好方法,但美國的FEMA-273容量震譜法和ATC-40位移系數(shù)法推薦使用靜力彈塑性分析法。這篇論文將比較分別利用靜力彈塑性分析法與非線性時(shí)程分析法分析所得到的結(jié)果。為了評(píng)估彈塑性分析法在三種不同荷載形式和四種自然周期下的結(jié)果,非線性時(shí)程分析法也被執(zhí)行來對(duì)照。在不同地震下分布在全球的50個(gè)站點(diǎn)紀(jì)錄了地面運(yùn)動(dòng)情況被用來做分析,通過比較靜力彈塑性分析法和非線性時(shí)程分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論