線段的垂直平分線優(yōu)質(zhì)課教案_第1頁(yè)
線段的垂直平分線優(yōu)質(zhì)課教案_第2頁(yè)
線段的垂直平分線優(yōu)質(zhì)課教案_第3頁(yè)
線段的垂直平分線優(yōu)質(zhì)課教案_第4頁(yè)
線段的垂直平分線優(yōu)質(zhì)課教案_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 /5線段的垂直平分線【教學(xué)目標(biāo)】1經(jīng)歷線段垂直平分線性質(zhì)的發(fā)現(xiàn)過(guò)程,初步掌握線段垂直平分線的性質(zhì)定理及其逆定理,體會(huì)辨證思想;2能運(yùn)用線段垂直平分線性質(zhì)定理及其逆定理解決簡(jiǎn)單的幾何問(wèn)題;3通過(guò)從操作實(shí)驗(yàn)到演繹推理的數(shù)學(xué)活動(dòng),認(rèn)識(shí)實(shí)驗(yàn)歸納和演繹推理的作用。【教學(xué)重難點(diǎn)】重點(diǎn):線段垂直平分線性質(zhì)定理及其逆定理;難點(diǎn):線段垂直平分線性質(zhì)定理及其逆定理的應(yīng)用?!窘虒W(xué)準(zhǔn)備】課件,三角尺,學(xué)案【教學(xué)過(guò)程】一、情景引入1引例:區(qū)政府為了方便居民日常生活,計(jì)劃開一家大超市,為了使該超市到A,B,C三個(gè)居民小區(qū)的距離相等,請(qǐng)同學(xué)們?cè)O(shè)計(jì)一下,這個(gè)超市應(yīng)該建在哪里呢?B小區(qū)C小區(qū)2.回顧,導(dǎo)入a小區(qū)提問(wèn)1:線段是

2、不是軸對(duì)稱圖形?如果是,那么請(qǐng)說(shuō)明它的對(duì)稱軸在哪里?提問(wèn)2:如圖,線段AB關(guān)于直線MN對(duì)稱,在直線MN上任取一點(diǎn)P,分別聯(lián)結(jié)PA.PB,那么線段PA與PB一定相等嗎?揭示課題:線段的垂直平分線二、學(xué)習(xí)新知(一)探究新知線段的垂直平分線的性質(zhì)定理操作:以直線MN為折痕將這個(gè)圖形翻折,觀察點(diǎn)P的位置動(dòng)不動(dòng)?點(diǎn)A與點(diǎn)B是否重合?你得到哪些線段相等?歸納:如果一個(gè)點(diǎn)在一條直線的垂直平分線上,那么分別聯(lián)結(jié)這點(diǎn)與線段兩個(gè)端點(diǎn)所得的兩條線段相等。驗(yàn)證:證明這個(gè)命題,寫出已知和求證。已知:如圖,直線MN是線段AB的垂直平分線,垂足為點(diǎn)C,點(diǎn)P在直線MN上。求證:PA=PB.分析:如圖,當(dāng)點(diǎn)P不在線段AB上時(shí),

3、要證明PA=PB,只需要證厶PCA95PCB.由直線MN是線段AB的垂直平分線,可知CA=CB,ZPCA=ZPCB,再加上PC為公共邊,三角形全等即可得到。特別地,當(dāng)點(diǎn)P在線段AB上時(shí),P點(diǎn)與C點(diǎn)重合,此時(shí)PA=PB當(dāng)然也成立。證明:/MN是線段AB的垂直平分線(已知)MN丄AB,AC=BC(線段垂直平分線的定義)設(shè)點(diǎn)P在線段AB外時(shí),TMN丄AB(已證)ZPCA=ZPCB=90(垂直的定義)在APCA和APCB中,(AC=BC(已證)ZPCA=ZPCB(已證)PC=PC(公共邊)PCAAPCB(S.A.S)PA=PB(全等三角形對(duì)應(yīng)邊相等)當(dāng)點(diǎn)P在線段AB上時(shí),點(diǎn)P與點(diǎn)C重合,即PA=PB歸

4、納線段垂直平分線的性質(zhì)定理:文字語(yǔ)言:線段垂直平分線上的任意一點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等符號(hào)語(yǔ)言:點(diǎn)P在線段AB的垂直平分線上.PA=PB辨析練習(xí):如圖(1):若AC垂直平分BD,則AB=如圖(2):若BD垂直平分AC,則AB=如圖(3):若AC、BD互相垂直平分,則AB=如圖(4):PD、PE分別垂直平分線段AB、BC,則PAPC1)(3)DABD2)2逆定理:提問(wèn):線段垂直平分線的逆命題是什么?逆命題正確嗎?原命題:如果有一個(gè)點(diǎn)為線段垂直平分線上的任意一點(diǎn),那么這個(gè)點(diǎn)到線段的兩個(gè)端點(diǎn)距離相等。逆命題:如果一個(gè)點(diǎn)到線段的兩個(gè)端點(diǎn)距離相等,那么這個(gè)點(diǎn)是這條線段垂直平分線上的一點(diǎn)。簡(jiǎn)寫為:和

5、一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的直平分線上。符號(hào)語(yǔ)言:PA=PB點(diǎn)P在線段AB的垂直平分線上驗(yàn)證:已知:如圖,PA=PB證明:點(diǎn)P在線段AB的垂直平分線上。分析:為了證明點(diǎn)P在線段AB的垂直平分線上,可以先經(jīng)過(guò)點(diǎn)P作線段AB的垂線MN,然后證明直線MN平分線段AB.證明:過(guò)點(diǎn)P作MN丄AB,垂足為點(diǎn)C/PA=PB(已知)PC丄AB(已作)AC=BC(等腰三角形底邊上的高平分底邊)PC是線段AB的垂直平分線即點(diǎn)P在線段AB的垂直平分線上特別地,當(dāng)P就在AB的中點(diǎn)上時(shí),結(jié)論正確嗎?綜上所述,這條逆命題是正確的,也就是說(shuō),線段的垂直平分線有它的逆定理。3線段的垂直平分線性質(zhì)定理和逆定理的區(qū)

6、別:性質(zhì)定理是歸納線段垂直平分線上點(diǎn)到線段兩端點(diǎn)的距離的數(shù)量關(guān)系。逆定理是歸納和一條線段兩端點(diǎn)距離相等的點(diǎn)與線段的位置關(guān)系。(二)應(yīng)用新知,嘗試反饋例題1已知:如圖,AB=AC,DB=DC,E是AD上一點(diǎn)。求證:BE=CE。證明:聯(lián)結(jié)BC./AB=AC,DB=DC.點(diǎn)A、D在線段的垂直平分線上(和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上)AD是線段BC的垂直平分線,點(diǎn)E在AD上,BE=CE(線段垂直平分線上的任意一點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等)?!菊f(shuō)明】本例綜合運(yùn)用了線段垂直平分線的性質(zhì)定理及其逆定理,通過(guò)本例讓學(xué)生學(xué)會(huì)靈活運(yùn)用這兩個(gè)定理解決幾何問(wèn)題,并且明確這兩個(gè)定理各自的作

7、用,性質(zhì)定理可以用來(lái)證明線段相等,學(xué)生原有證明線段相等的思維模式包括利用全等三角形和等角對(duì)等邊,通過(guò)本例知道證明線段相等又多了一種途徑。對(duì)于線段垂直平分線性質(zhì)定理的逆定理的應(yīng)用,部分學(xué)生可能錯(cuò)誤地認(rèn)為“因?yàn)榈骄€段兩端距離相等的點(diǎn)在線段垂直平分線上,所以過(guò)到線段兩端距離相等的點(diǎn)的直線是這條線段垂直平分線”,在本例教學(xué)中要引導(dǎo)學(xué)生認(rèn)識(shí)過(guò)一點(diǎn)不能確定一條直線,判定一條直線是已知線段的垂直平分線,必須有和已知線段兩端距離相等的的兩個(gè)點(diǎn)才能確定這條直線。同步練習(xí):如圖,已知AB=AC,ZABD=ZACD,求證:AD是線段BC的垂直平分線。A證明:.AB=AC(已知)ZABC=ZACB(等邊對(duì)等角)又ZA

8、BD=ZACD(已知)ZABD-ZABC=ZACD-ZACB(等式性質(zhì))即ZDBC=ZDCBDB=DC(等角對(duì)等邊)VAB=AC(已知)DB=DC(已證)點(diǎn)A和點(diǎn)D都在線段BC的垂直平分線上(和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上)AD是線段BC的垂直平分線。(三)實(shí)際應(yīng)用,拓展新知現(xiàn)在我們可以來(lái)解決之前引例中的問(wèn)題,啟發(fā)學(xué)生討論得出只需要畫出三角形其中兩邊的垂直平分線,得到它們的交點(diǎn)即為所求,并且第三邊的垂直平分線也必過(guò)這個(gè)交點(diǎn)。由此自然引出例題2的教學(xué),證明上述結(jié)論成立。例題2NO已知:如圖,在ABC中,OM、ON分別是AB、AC的垂直平分線,OM與ON相交與點(diǎn)0。求證:點(diǎn)O在BC的垂直平分線上。分析:要引導(dǎo)學(xué)生想到本例的關(guān)鍵在于分別聯(lián)結(jié)OB、OA、OC證明:分別聯(lián)結(jié)OB、OA、0C.TOM、ON分別是AB、AC的垂直平分線(已知)OA=OB,OA=OC(線段垂直平分線上的任意一點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等)OB=OC(等量代換)點(diǎn)O在BC的垂直平分線上(和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論