版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)后勤工程學(xué)院數(shù)學(xué)教研室回歸分析7/25/20221實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容2、掌握用數(shù)學(xué)軟件求解回歸分析問(wèn)題。1、直觀了解回歸分析基本內(nèi)容。1、回歸分析的基本理論。3、實(shí)驗(yàn)作業(yè)。2、用數(shù)學(xué)軟件求解回歸分析問(wèn)題。7/25/20222一元線性回歸多元線性回歸回歸分析數(shù)學(xué)模型及定義*模型參數(shù)估計(jì)*檢驗(yàn)、預(yù)測(cè)與控制可線性化的一元非線性回歸(曲線回歸)數(shù)學(xué)模型及定義*模型參數(shù)估計(jì)*多元線性回歸中的檢驗(yàn)與預(yù)測(cè)逐步回歸分析7/25/20223一、數(shù)學(xué)模型例1 測(cè)16名成年女子的身高與腿長(zhǎng)所得數(shù)據(jù)如下:以身高x為橫坐標(biāo),以腿長(zhǎng)y為縱坐標(biāo)將這些數(shù)據(jù)點(diǎn)(xI,yi)在平面直角坐標(biāo)系上標(biāo)出.散點(diǎn)圖解答7/
2、25/20224一元線性回歸分析的主要任務(wù)是:返回7/25/20225二、模型參數(shù)估計(jì)1、回歸系數(shù)的最小二乘估計(jì)7/25/202267/25/20227返回7/25/20228三、檢驗(yàn)、預(yù)測(cè)與控制1、回歸方程的顯著性檢驗(yàn)7/25/20229()F檢驗(yàn)法 ()t檢驗(yàn)法7/25/202210()r檢驗(yàn)法7/25/2022112、回歸系數(shù)的置信區(qū)間7/25/2022123、預(yù)測(cè)與控制(1)預(yù)測(cè)7/25/202213(2)控制返回7/25/202214四、可線性化的一元非線性回歸 (曲線回歸)例2 出鋼時(shí)所用的盛鋼水的鋼包,由于鋼水對(duì)耐火材料的侵蝕, 容積不斷增大.我們希望知道使用次數(shù)與增大的容積之間
3、的關(guān) 系.對(duì)一鋼包作試驗(yàn),測(cè)得的數(shù)據(jù)列于下表:解答7/25/202215散點(diǎn)圖此即非線性回歸或曲線回歸 問(wèn)題(需要配曲線)配曲線的一般方法是:7/25/202216通常選擇的六類曲線如下:返回7/25/202217一、數(shù)學(xué)模型及定義返回7/25/202218二、模型參數(shù)估計(jì)7/25/202219返回7/25/202220三、多元線性回歸中的檢驗(yàn)與預(yù)測(cè) ()F檢驗(yàn)法()r檢驗(yàn)法(殘差平方和)7/25/2022212、預(yù)測(cè)(1)點(diǎn)預(yù)測(cè)(2)區(qū)間預(yù)測(cè)返回7/25/202222四、逐步回歸分析(4)“有進(jìn)有出”的逐步回歸分析。(1)從所有可能的因子(變量)組合的回歸方程中選擇最優(yōu)者;(2)從包含全部變
4、量的回歸方程中逐次剔除不顯著因子;(3)從一個(gè)變量開始,把變量逐個(gè)引入方程;選擇“最優(yōu)”的回歸方程有以下幾種方法: “最優(yōu)”的回歸方程就是包含所有對(duì)Y有影響的變量, 而不包含對(duì)Y影響不顯著的變量回歸方程。 以第四種方法,即逐步回歸分析法在篩選變量方面較為理想.7/25/202223 這個(gè)過(guò)程反復(fù)進(jìn)行,直至既無(wú)不顯著的變量從回歸方程中剔除,又無(wú)顯著變量可引入回歸方程時(shí)為止。逐步回歸分析法的思想: 從一個(gè)自變量開始,視自變量Y作用的顯著程度,從大到地依次逐個(gè)引入回歸方程。 當(dāng)引入的自變量由于后面變量的引入而變得不顯著時(shí),要將其剔除掉。 引入一個(gè)自變量或從回歸方程中剔除一個(gè)自變量,為逐步回歸的一步。
5、 對(duì)于每一步都要進(jìn)行Y值檢驗(yàn),以確保每次引入新的顯著性變量前回歸方程中只包含對(duì)Y作用顯著的變量。返回7/25/202224統(tǒng)計(jì)工具箱中的回歸分析命令1、多元線性回歸2、多項(xiàng)式回歸3、非線性回歸4、逐步回歸返回7/25/202225多元線性回歸 b=regress( Y, X )1、確定回歸系數(shù)的點(diǎn)估計(jì)值:7/25/2022263、畫出殘差及其置信區(qū)間: rcoplot(r,rint)2、求回歸系數(shù)的點(diǎn)估計(jì)和區(qū)間估計(jì)、并檢驗(yàn)回歸模型: b, bint,r,rint,stats=regress(Y,X,alpha)回歸系數(shù)的區(qū)間估計(jì)殘差用于檢驗(yàn)回歸模型的統(tǒng)計(jì)量,有三個(gè)數(shù)值:相關(guān)系數(shù)r2、F值、與F
6、對(duì)應(yīng)的概率p置信區(qū)間 顯著性水平(缺省時(shí)為0.05)7/25/202227例1解:1、輸入數(shù)據(jù): x=143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164; X=ones(16,1) x; Y=88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102;2、回歸分析及檢驗(yàn): b,bint,r,rint,stats=regress(Y,X) b,bint,statsTo MATLAB(liti11)題目7/25/2022283、殘差分析,作殘差圖: rcoplot(r,rint) 從
7、殘差圖可以看出,除第二個(gè)數(shù)據(jù)外,其余數(shù)據(jù)的殘差離零點(diǎn)均較近,且殘差的置信區(qū)間均包含零點(diǎn),這說(shuō)明回歸模型 y=-16.073+0.7194x能較好的符合原始數(shù)據(jù),而第二個(gè)數(shù)據(jù)可視為異常點(diǎn). 4、預(yù)測(cè)及作圖:z=b(1)+b(2)*x plot(x,Y,k+,x,z,r)返回To MATLAB(liti12)7/25/202229多 項(xiàng) 式 回 歸 (一)一元多項(xiàng)式回歸 (1)確定多項(xiàng)式系數(shù)的命令:p,S=polyfit(x,y,m)(2)一元多項(xiàng)式回歸命令:polytool(x,y,m)1、回歸:y=a1xm+a2xm-1+amx+am+12、預(yù)測(cè)和預(yù)測(cè)誤差估計(jì):(1)Y=polyval(p,x
8、)求polyfit所得的回歸多項(xiàng)式在x處 的預(yù) 測(cè)值Y; (2)Y,DELTA=polyconf(p,x,S,alpha)求polyfit所得 的回歸多項(xiàng)式在x處的預(yù)測(cè)值Y及預(yù)測(cè)值的顯著性為1- alpha的置信區(qū)間Y DELTA;alpha缺省時(shí)為0.5.7/25/202230法一 直接作二次多項(xiàng)式回歸: t=1/30:1/30:14/30; s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48; p,S=polyfit(t,s,2)To MATLAB(liti21)得
9、回歸模型為 :7/25/202231法二化為多元線性回歸:t=1/30:1/30:14/30;s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;T=ones(14,1) t (t.2);b,bint,r,rint,stats=regress(s,T);b,statsTo MATLAB(liti22)得回歸模型為 :Y=polyconf(p,t,S) plot(t,s,k+,t,Y,r)預(yù)測(cè)及作圖To MATLAB(liti23)7/25/202232(二)多元二項(xiàng)式回
10、歸命令:rstool(x,y,model, alpha)nm矩陣顯著性水平(缺省時(shí)為0.05)n維列向量7/25/202233 例3 設(shè)某商品的需求量與消費(fèi)者的平均收入、商品價(jià)格的統(tǒng)計(jì)數(shù) 據(jù)如下,建立回歸模型,預(yù)測(cè)平均收入為1000、價(jià)格為6時(shí) 的商品需求量.法一 直接用多元二項(xiàng)式回歸:x1=1000 600 1200 500 300 400 1300 1100 1300 300;x2=5 7 6 6 8 7 5 4 3 9;y=100 75 80 70 50 65 90 100 110 60;x=x1 x2; rstool(x,y,purequadratic)7/25/202234 在畫面左
11、下方的下拉式菜單中選”all”, 則beta、rmse和residuals都傳送到Matlab工作區(qū)中.在左邊圖形下方的方框中輸入1000,右邊圖形下方的方框中輸入6。 則畫面左邊的“Predicted Y”下方的數(shù)據(jù)變?yōu)?8.47981,即預(yù)測(cè)出平均收入為1000、價(jià)格為6時(shí)的商品需求量為88.4791.7/25/202235在Matlab工作區(qū)中輸入命令: beta, rmseTo MATLAB(liti31)7/25/202236結(jié)果為: b = 110.5313 0.1464 -26.5709 -0.0001 1.8475 stats = 0.9702 40.6656 0.0005法二
12、To MATLAB(liti32)返回將 化為多元線性回歸:7/25/202237非線性回 歸 (1)確定回歸系數(shù)的命令: beta,r,J=nlinfit(x,y,model, beta0)(2)非線性回歸命令:nlintool(x,y,model, beta0,alpha)1、回歸:殘差Jacobian矩陣回歸系數(shù)的初值是事先用m-文件定義的非線性函數(shù)估計(jì)出的回歸系數(shù)輸入數(shù)據(jù)x、y分別為 矩陣和n維列向量,對(duì)一元非線性回歸,x為n維列向量。2、預(yù)測(cè)和預(yù)測(cè)誤差估計(jì):Y,DELTA=nlpredci(model, x,beta,r,J)求nlinfit 或nlintool所得的回歸函數(shù)在x處的
13、預(yù)測(cè)值Y及預(yù)測(cè)值的顯著性為1-alpha的置信區(qū)間Y DELTA.7/25/202238例 4 對(duì)第一節(jié)例2,求解如下:2、輸入數(shù)據(jù): x=2:16; y=6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76; beta0=8 2;3、求回歸系數(shù): beta,r ,J=nlinfit(x,y,volum,beta0); beta得結(jié)果:beta = 11.6036 -1.0641即得回歸模型為:To MATLAB(liti41)題目7/25/2022394、預(yù)測(cè)及作圖: YY,delta=nl
14、predci(volum,x,beta,r ,J); plot(x,y,k+,x,YY,r)To MATLAB(liti42)7/25/202240例5 財(cái)政收入預(yù)測(cè)問(wèn)題:財(cái)政收入與國(guó)民收入、工業(yè)總產(chǎn)值、農(nóng)業(yè)總產(chǎn)值、總?cè)丝?、就業(yè)人口、固定資產(chǎn)投資等因素有關(guān)。下表列出了1952-1981年的原始數(shù)據(jù),試構(gòu)造預(yù)測(cè)模型。 解 設(shè)國(guó)民收入、工業(yè)總產(chǎn)值、農(nóng)業(yè)總產(chǎn)值、總?cè)丝?、就業(yè)人口、固定資產(chǎn)投資分別為x1、x2、x3、x4、x5、x6,財(cái)政收入為y,設(shè)變量之間的關(guān)系為:y= ax1+bx2+cx3+dx4+ex5+fx6使用非線性回歸方法求解。7/25/2022411 對(duì)回歸模型建立M文件model.m
15、如下: function yy=model(beta0,X) a=beta0(1); b=beta0(2); c=beta0(3); d=beta0(4); e=beta0(5); f=beta0(6); x1=X(:,1); x2=X(:,2); x3=X(:,3); x4=X(:,4); x5=X(:,5); x6=X(:,6); yy=a*x1+b*x2+c*x3+d*x4+e*x5+f*x6; 7/25/2022422. 主程序liti6.m如下:X=598.00 349.00 461.00 57482.00 20729.00 44.00 . 2927.00 6862.00 1273.
16、00 100072.0 43280.00 496.00;y=184.00 216.00 248.00 254.00 268.00 286.00 357.00 444.00 506.00 . 271.00 230.00 266.00 323.00 393.00 466.00 352.00 303.00 447.00 . 564.00 638.00 658.00 691.00 655.00 692.00 657.00 723.00 922.00 . 890.00 826.00 810.0;beta0=0.50 -0.03 -0.60 0.01 -0.02 0.35;betafit = nlinfi
17、t(X,y,model,beta0)To MATLAB(liti6)7/25/202243 betafit = 0.5243 -0.0294 -0.6304 0.0112 -0.0230 0.3658即y= 0.5243x1-0.0294x2-0.6304x3+0.0112x4-0.0230 x5+0.3658x6結(jié)果為:返 回7/25/202244逐 步 回 歸逐步回歸的命令是: stepwise(x,y,inmodel,alpha) 運(yùn)行stepwise命令時(shí)產(chǎn)生三個(gè)圖形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise
18、Plot窗口,顯示出各項(xiàng)的回歸系數(shù)及其置信區(qū)間. Stepwise Table 窗口中列出了一個(gè)統(tǒng)計(jì)表,包括回歸系數(shù)及其置信區(qū)間,以及模型的統(tǒng)計(jì)量剩余標(biāo)準(zhǔn)差(RMSE)、相關(guān)系數(shù)(R-square)、F值、與F對(duì)應(yīng)的概率P.矩陣的列數(shù)的指標(biāo),給出初始模型中包括的子集(缺省時(shí)設(shè)定為全部自變量)顯著性水平(缺省時(shí)為0.5)自變量數(shù)據(jù), 階矩陣因變量數(shù)據(jù), 階矩陣7/25/202245例6 水泥凝固時(shí)放出的熱量y與水泥中4種化學(xué)成分x1、x2、x3、 x4 有關(guān),今測(cè)得一組數(shù)據(jù)如下,試用逐步回歸法確定一個(gè) 線性模 型.1、數(shù)據(jù)輸入:x1=7 1 11 11 7 11 3 1 2 21 1 11 10;x2=26 29 56 31 52 55 71 31 54 47 40 66 68;x3=6 15 8 8 6 9 17 22 18 4 23 9 8;x4=60 52 20 47 33 22 6 44 22 26 34 12 12;y=78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4;x=x1 x2 x3 x4;7/25/2022462、逐步回歸:(1)先在初始模型中取全部自變量: stepwise(x,y)得圖Stepwise Plot 和表Stepwise Table圖Stepwise P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電工電子技術(shù)(第3版) 課件 1.8.1 疊加定理
- 銀行員工行為規(guī)范手冊(cè)制度
- 測(cè)量課件之大比例尺地形圖的測(cè)繪
- 年度安全工作計(jì)劃15篇
- 《言語(yǔ)產(chǎn)生》課件
- 吉林省白山市2023-2024學(xué)年高二上學(xué)期1月期末考試+物理 含解析
- 2017年安徽省中考思想品德第一輪復(fù)習(xí)時(shí)事專題熱點(diǎn)解讀
- 《信息科學(xué)部》課件
- 上海市2025屆高考考前提分語(yǔ)文仿真卷含解析
- 2025屆寧夏吳忠市青銅峽高級(jí)中學(xué)高三第一次調(diào)研測(cè)試英語(yǔ)試卷含解析
- 《倉(cāng)庫(kù)盤點(diǎn)培訓(xùn)》課件
- 2024年廣東省深圳市福田區(qū)中考一模英語(yǔ)試題(解析版)
- 2024版電動(dòng)汽車充電站建設(shè)合同3篇
- 過(guò)敏性休克課件護(hù)理
- 2024年度美團(tuán)騎手勞動(dòng)合同樣本3篇
- 鼻炎護(hù)理日常常規(guī)培訓(xùn)
- 平安夜圣誕節(jié)介紹活動(dòng)方案6
- 校園冬季消防安全知識(shí)
- 2021年軍隊(duì)文職統(tǒng)一考試《專業(yè)科目》管理學(xué)類-管理學(xué)試題(含解析)
- 2024年安全員之A證考試題庫(kù)附參考答案(黃金題型)
- 學(xué)員培訓(xùn)合同范本
評(píng)論
0/150
提交評(píng)論