版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、基于ArcGIS的水利大數(shù)據(jù)及應用團隊簡介水利大數(shù)據(jù)及其面臨的挑戰(zhàn)基于水利大數(shù)據(jù)的多災害信息集成與風險預警案例主要內(nèi)容123二、水利大數(shù)據(jù)及其面臨的挑戰(zhàn)水利工作關系到國計民生,尤其是我國水資源 分布存在嚴重的時空分布不均特性,旱災洪澇 易發(fā)多發(fā)。水利行業(yè)在經(jīng)濟、生態(tài)、社會等方 面都扮演著重要角色,對水利大數(shù)據(jù)的研究具 有重要的現(xiàn)實意義和應用價值。水利大數(shù)據(jù)是在大數(shù)據(jù)的理論指導及技術支 撐下的水利科學和工程的重要實踐。水利工作及水利大數(shù)據(jù)的重要性水利大數(shù)據(jù)水利大數(shù)據(jù)是指產(chǎn)生于各種水文監(jiān)測網(wǎng)絡、水利設施、用 水單位和水利相關經(jīng)濟活動,并通過現(xiàn)代化信 息技術高效傳輸、分布存儲于各地存儲系統(tǒng)、 但又可
2、以快速讀取集中于云端、實現(xiàn)深度數(shù)據(jù) 挖掘并可視化的海量多源數(shù)據(jù)總和。ValueVelocityVolume海量快速價值Variety多樣Veracity真實交叉性,由于水利和其它領域具有交叉性,因此水利大數(shù) 據(jù)和遙感大數(shù)據(jù)、氣象大數(shù)據(jù)、海洋大數(shù)據(jù)等交叉;時空分布性,需要依賴先進大數(shù)據(jù)技術進行處理分析,包 括分布式大數(shù)據(jù)存儲框架、機器學習等數(shù)據(jù)挖掘方法;多元循環(huán)性,由水的多元循環(huán)決定的水利大數(shù)據(jù)在經(jīng)濟、 社會、生態(tài)等領域的價值循環(huán)。水利大數(shù)據(jù)的外延挑戰(zhàn)一:水利大數(shù)據(jù)的收集與集成水利大數(shù)據(jù)來源廣泛,不同的監(jiān)測平臺得到的 數(shù)據(jù)具有不同的數(shù)據(jù)結構、存儲系統(tǒng),非結構 化數(shù)據(jù)、半結構化數(shù)據(jù)、結構化數(shù)據(jù)并存
3、;由于觀測條件的差異,數(shù)據(jù)可信度層次不齊,對數(shù)據(jù)清洗和質(zhì)量的確保提出了很高的要求;大數(shù)據(jù)的存儲與管理需要新型數(shù)據(jù)庫的支持, 水利大數(shù)據(jù)的信息化還未與新型數(shù)據(jù)庫接軌。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)二:水利大數(shù)據(jù)的時空多維度分析水利大數(shù)據(jù)具有明顯的時空分布特性,時間、 空間雙維度下的數(shù)據(jù)分析具有難度;水利大數(shù)據(jù)在其應用領域講究實時性,比如洪 水預報等,這對大數(shù)據(jù)的處理分析速度提出了 高要求;水利大數(shù)據(jù)的深度挖掘有賴于引入先進的人工 智能算法,兩者的有效結合至關重要。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)三:水利大數(shù)據(jù)的共享與安全眾多水利數(shù)據(jù)掌握在政府機關部門,為非公 開數(shù)據(jù),形成數(shù)據(jù)孤島現(xiàn)象;水利數(shù)據(jù)是國家安全的重要
4、組成部分,水利 數(shù)據(jù)的共享與安全是一個值得探討的問題。水利大數(shù)據(jù)面臨的挑戰(zhàn)三、基于水利大數(shù)據(jù)的多災害信息集 成與風險預警案例介紹基于水利大數(shù) 據(jù)的多災害信 息集成與風險 預警案例介紹1、天、地、空、海,多基多源降水數(shù)據(jù)采集2、移動眾包信息收集可視化云平臺mPing3、基于水利大數(shù)據(jù)的全球洪水泥石流災害預測預報4、基于概率洪水風險預報EF55、城市洪水模型Urban CREST介紹6、全球風暴數(shù)據(jù)庫及CI-FLOW7、中國區(qū)域多尺度洪水模擬及預警系統(tǒng)的建立8、基于ArcGIS的FFG介紹9、基于ArcGIS平臺開發(fā)的ArcCREST介紹基于水利大數(shù)據(jù)的多災害信息集成與風險預警案例介紹3小時臨近預
5、報(250米2.5分鐘)36小時模型預報(1公里小時)1.天、地、空、海多基多源降水數(shù)據(jù)采集 雙偏振雷達衛(wèi)星站點模型PERSIANN 全球衛(wèi)星產(chǎn)品(4km, hourly)Hong et al., 2004, JAM;5顆地球靜止衛(wèi)星(可見光紅外)以及4顆極軌衛(wèi)星(雷達和被動微波)通過人工神經(jīng)網(wǎng)絡ANN機器學習訓練反演 High Quality 衛(wèi)星降水產(chǎn)品Merge Satellites, ground (Radar & Gauge), and Model (NWP)TRMMAquaDMSPNOAAMETEOSAT(Europe)GOESGMS/MTSAT(Japan)TMPA uses 4
6、 Polar-orbital microwave satellites (NOAA, DoD, NASA) and 5 Geo-IR satellites(GOES8-10, GMS, MYSAT, MeteoSAT); all calibrated by TRMM Preci Radar17+ years (98-16) of data; Most requested TRMM product from NASAWith Huffman et al. 2007 : (1700+ 引用)2005 加入 NASA:多衛(wèi)星聯(lián)合反演共性技術;(1700+引用)全球天地空標準產(chǎn)品系列:TMPA30-d
7、ay HQ coefficientsInstant- aneous SSM/I TRMM AMSR AMSU3-hourly merged HQHourly IR TbHourly HQ-calib IR precip3-hourly multi- satellite (MS)Monthly gaugesMonthly SGRescale 3-hourly MS to monthly SGRescaled 3-hourly MSCalibrate High-Quality (HQ) Estimates to “Best” Space RadarMerge HQ EstimatesMatch I
8、R and HQ, generate coeffsApply IR coefficientsMerge IR, merged HQ estimatesCompute monthly satellite-gauge combination (SG)30-day IR coefficients26深度學習方法研制全球衛(wèi)星產(chǎn)品研制青藏西南部IR云圖相應時段降水情況在深度學習中,我們可以將不同頻段的可見光、紅外、微波影像同時作 為訓練數(shù)據(jù)輸入模型,且不需要事先設定Feature,海量的遙感影像下,讓 模型自己去尋找Feature。5-minute 250mRainfall Dataover USA2.
9、 mPING 美國版災害Crowdsourcing移動平臺技術2.移動眾包信息收集可視化云平臺 mPING Crowd Sourcing Tool and Data750,000+ App Downloads Since Dec 2013硅谷SF IoT/BigData Weather 2.0 Service Inc.Ensemble Coupled Hydro- Landslide Modeling SystemWater Balance ComponentCREST (Variable Infiltration Curve)SAC-SMARunoff RoutingCell-by-cell
10、 linear reservoirLandslide Model EnsembleTRIGRSSLIDE+Surface Flow and InundationSoil Water ContentOther variablesOccurrence and Locations of landslidesRemote Sensing basedPrecipitation EstimatesTopographyLand cover/Land Use3.基于水利大數(shù)據(jù)的全球水洪泥石流災害預測預報 National Flash Landslide System3. 基于水利大數(shù)據(jù)的全球水洪泥石流災害預測
11、預報美國暴雨山洪泥石流災害鏈業(yè)務化系統(tǒng)NFL:NMQ:National Mosaic and Multi-Sensor QPE (NMQ)FLASH:Flooded Locations And Simulated HydrographsLANDSLIDE:SLope-Infiltration-Distributed Equilibrium ModelNMQ Radar Precipitation Observations 250 m/2.5 minFLASH Distributed CRESTHydrologic Models10-11 June 2010, Albert Pike RecAr
12、ea, Arkansas250 mm150200Simulated surface water flow20fatalitiesLANDSLIDELandslide Hotspot ModelsRed: ObservationsPink: PredictionsLandslide predictionIntegrated Hydrologic-Landslide Model iCRESLIDE = CREST + SLIDECoupled Routing and Excess STorage (CREST)Jointly developed by OU/NASARun operationall
13、y overglobeDistributed, fully coupled runoff generation and routingWang amnoddHelong et al. 2011 HSJIntegrated Hydrologic-Landslide Model: iCRESLIDEDevelopment and Application- CREST has been set up at both national and basin scales in China;- iCRESLIDE shows great capability in forecasting shallow
14、landslides around the world;- More flood and landslide event data is needed.250m/5-min resolution of Q2 precipitation forcing and model outputsAddresses service needs in NWS; flash flooding is #1 weather-related killer6/11 12:30am-4am 20 deaths: Little Missouri River Crested from 3 ft to 23.5 ft wit
15、hin 2 hoursInclude data assimilation and probabilistic productsReadily incorporate dual-pol radar products (Q3) and stormscale ensemble forecastsNFL: Real-time, direct prediction of flash floods a realityPhoto source: National Geographic美國暴雨山洪泥石流災害鏈耦合系統(tǒng)核心模型Physically-coupled iCRESTSLIDE (SLope Infil
16、tration- Distributed Equilibrium)020408010012000.210.80.60.460Radius (m)POD FAR CSIValidation with inventory dataRed: Observations Pink: Predictions美國北卡州 梅肯縣Within 18-m 120-meter buffer zonePOD 0.50.9CSI 0.10.8FAR 0.90.2(Liao et al., 2011, Nat. Hazards )16th hrFS Map vs. Time18th hr21st hrForecastSt
17、reamflow (2010)Recurrence Interval(2010)Inundation (2015)State-Param EstimationDREAM (2010)Observed StreamflowGroundwaterMODFLOWRoutingKinematic wave (2014)Linear reservoir (2010)4.基于概率洪水風險預報 EF5Ensemble Framework ForFlashFlood ForecastingBest distributed hydrologic System yetPrecip ForcingMRMSTMPA
18、RTWRR/HRRR QPFEvapotranspirationFEWS NET PETHRRR tempVIIRS?Surface RunoffCREST (2010)SAC-SMA (2013)Hydrophobic (2015)SnowmeltSNOW-17 (2015)-2m TempCurrent VersionFutureAdditionEF5: Probability of Flash Flood Forecast (PFFF)基于概率洪水風險預報100%50%0%PFFF( RP = 5 yr )The New Features of uCREST Model1-10 Mete
19、r DEM and Urban Drainage SystemUrbanCanopyandHighRiseBuildingImpacton theRainfallInterceptionEnhanced Impervious (pavement, roof etc.) and Non-impervious surface infiltration and Surface Processes (runoff, ET etc)UrbanSewer/PipelineModuleincludedasaspecialInterflowProcess/reservoirHas been tested an
20、d implemented in Oklahoma City and Dallas Metropolitan at spatial resolution5.城市洪水模型UrbanCREST介紹A High-Resolution UrbanCREST Flood Modeling and Mapping System For Urban and Built-up Environments2010 June 14, OKC Flash Flood101 km1Return Period (years) 210200+No FloodingFloodingSevereFloodingUrban-CR
21、EST Flood Model Implemented at Oklahoma City &Dallas Metropolitan137 km6.全球風暴數(shù)據(jù)庫及CI-FLOW Global Storms (2000-2010)*Sellars et al. (2013), Computational Earth Science: Big Data Transformed Into Insight, EOS Trans. AGU, 94(32),277Nov 2011 BAMSThe CI-FLOW Project:A System for Total Water Level Predicti
22、on From The Summit To The SeaCI-FLOW summary paper with Hurricane Isabel, Hurricane Earl, & Tropical Storm Nicole resultsVolume # Number # November 2011BAMSAmerican Meteorological SocietySuzanne Van Cooten, , Yang Hong, et al., 2011: The ci-flow project: a system for total water level prediction fro
23、m the summit to the sea. Bull. Amer.Meteor. Soc., 92, 14271442.已應用到美國北卡羅來納州、墨西哥灣等易受颶風和風暴潮影響的海岸帶地區(qū)海洋風暴潮與內(nèi)陸洪水監(jiān)測預警系統(tǒng)(CI-FLOW)CI-FLOWCoastal and Inland Flooding Observation and WarningTracking the raindrops and disasters from the SKY and the SUMMIT to the seaCI-FLOW: HL-RDHM/SWAN/ADCIRC Coupled ModelPre
24、cipitationSig. Wave HeightsTotal Water LevelsRiver BCsDischargeSurface BCsPressure Wind ForcingSurface BCsWave ForcingHydrodynamic Model (ADCIRC)HydrologicModelAtmospheric ModelWave ModelPrecipitation Source: QPE/QPF Atmospheric Model: NAM or NHC trackHydrologic Model: HL-RDHM, Vflo or CRESTWave Mod
25、el: unstructured SWAN7.中國區(qū)域多尺度洪水模擬及預警系統(tǒng)的建立中國的山洪預警系統(tǒng)量融合,驅(qū)動CREST模型,模擬徑流分布與氣象局以及國家氣象中心合作開發(fā)多源降水產(chǎn)品和地面臺站數(shù)據(jù)進行雨地貌水動力學模型模擬洪水淹沒情景的時空演進,實時動態(tài)提取洪水淹沒范圍、水深分布和淹沒時間分布, 實現(xiàn)對洪水的模擬洪水模擬的時間:199806280501001502002503000500010000150002000025000Date 3/5/19975/8/19977/11/19979/13/199711/16/19971/19/19983/24/19985/27/19987/30/1
26、99810/2/199812/5/19982/7/19994/12/19996/15/19998/18/199910/21/199912/24/19992/26/20004/30/20007/3/20009/5/200011/8/20001/11/20013/16/20015/19/20017/22/20019/24/200111/27/20011/30/20024/4/20026/7/20028/10/200210/13/200212/16/20022/18/20034/23/20036/26/20038/29/200311/1/20031/4/20043/8/20045/11/20047/
27、14/20049/16/200411/19/20041/22/20053/27/20055/30/20058/2/200510/5/200512/8/2005R_Obs in (m3/s)R(v2.1) in (m3/s)rain率定期驗證期NSCE=0.897CC=0.947Bias=-1.57%20 年、10 年、5年、2年、1年 一遇洪水外州站CREST模型率定/模擬效果:氣象臺站數(shù)據(jù)驅(qū)動7.中國區(qū)域多尺度洪水模擬及預警系統(tǒng)的建立114114.5115115.5116116.51172525.52626.52727.52828.529iMAP 在嘉陵江流域的應用結果7.中國區(qū)域多尺度洪水
28、模擬及預警系統(tǒng)的建立9.基于ArcGIS平臺開發(fā)的ArcCREST介紹 ArcCREST UIPrecip ThiessenEvap ThiessenGeo DataUsed for rainfall sites (Cell-based data need some effort)Parameters distribution need more advanced methodBugs in code, the results are not correctGeo and Hydro data management and operationParameters distribution se
29、ttingModel running and results showArcCREST運行結果分析ArcCRESTv1.0(Uncalib)ArcCRESTv1.0Nash-Sutliffe-0.415460.8121Bias (%)-99.999915.25CC0.79630.8382300200100040050011325374961738597109121133145157169181193205217229241253265277289301313325337349361Discharge(m3)Time(24h)Discharge: ArcCREST vs GageCalibUnCalibActualR=0.70255010015020025030000501001502002
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)大全【人事管理】
- 三角形的面積推導課件
- 第4單元 民族團結與祖國統(tǒng)一 測試卷-2021-2022學年部編版八年級歷史下冊
- DBJT 13-317-2019 裝配式輕型鋼結構住宅
- 《電鍍錫工藝學》課件
- 2024年大學生攝影大賽活動總結
- 《焊接基本知識》課件
- 中小學家長會122
- 美術:源起與影響
- 醫(yī)療行業(yè)專業(yè)技能培訓體會
- 2020年10月自考00094外貿(mào)函電試題及答案含解析
- 中等職業(yè)學校教研教改工作總結
- 甲狀腺細針穿刺細胞學檢查課件
- 醫(yī)療廢物管理人員及相關工作人員培訓制度(15篇范文)
- 麻醉醫(yī)學知識培訓培訓課件
- 人教版四年級上冊數(shù)學 第五單元《平行四邊形和梯形》單元專項訓練 作圖題(含答案)
- 物業(yè)品質(zhì)督導述職報告
- 2024年山東濟南軌道交通集團有限公司招聘筆試參考題庫含答案解析
- 療愈行業(yè)現(xiàn)狀分析
- 北京海淀區(qū)2023-2024學年六年級上學期期末數(shù)學數(shù)學試卷
- 2023年安全總監(jiān)年終工作總結
評論
0/150
提交評論