版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、1Digital Logic Design and ApplicationJin YanhuaLecture #7Other CMOS Input and Output StructuresBasic Logic AlgebraUESTC, Spring 2014Jin. UESTC2答疑安排第317周周二 3、4節(jié),7、8節(jié)周四 3、4節(jié)周五 1、2節(jié)A教1樓教室休息室 電梯/(A102)旁邊或2樓 A202旁邊的教師休息室Jin. UESTC3Last TimeOther CMOS Input and Output StructruesENEN_LABSchmitt-Trigger Inp
2、utsVOUTVIN5.02.12.95.0VT+VT-Transmission GatesAENOUTThree-State OutputsJin. UESTC44. Open-Drain OutputsABZVCCVCCR pull-up resistanceABZLogic SymbolAs small as possible, to minimize the rise time. Cannot be arbitrarily small, it is determined by IOLmaxpassive pull-up無源上拉Applications: driving multisou
3、rce buses; driving LEDs; performing wired logic. Jin. UESTC5Driving LEDsVOLmaxILED = 10 mAJin. UESTC6Multi-source BusesJin. UESTC7輸出電平?造成邏輯混亂很大的負(fù)載電流同時流過輸出級可使門電路損壞VCCAZactive pull-up有源上拉VCCB低高有源上拉的CMOS器件其輸出端不能直接相聯(lián)1001M1001MJin. UESTC8Wired Logic of Open-Drain OutputsABZVCCVCCRCDVCCZ = Z1 Z2 = (AB) (C
4、D) = (AB + CD)Z1Z2Wired AND (線與) 第4章 反演定理 Jin. UESTC93.8 CMOS Logic FamiliesElectrical Characteristics (P.144-147 Table3-5/6/7)Symmetric output drive: output can sink or source equal amounts of current.Jin. UESTC103.9 Low-Voltage CMOS Logic and InterfacingP.152 Figure 3-62P.155 3.9.4 SummaryJin. UES
5、TC11TTL Logic FamiliesTTL Logic Levels and Noise MarginsTTL fanoutAsymmetric output drive A TTL Data Sheet P167 Table3-10IILmax=0.4 mA IIHmax=20 uAIOLmax=8 mA IOHmax=400 uAJin. UESTC12CMOS/TTL InterfacingConsider: Noise Margin, Fan-out, Capacitance LoadsabnormalVOLmax0.5VOHmin2.7VIHmin2.0VOLmax0.8TT
6、LabnormalVOLmax0.33VOLmax0.8VIHmin2.0VOHmin3.84CMOS74HCT driving 74LS H-state: |VOHmin VIHmin| = 1.84V L-state: |VOLmin VILmin| = 0.47V74LS driving 74HCT High: 2.7 2.0 = 0.7V Low: | 0.5 0.8 | = 0.3VJin. UESTC13Logic Families3.8 CMOS FamiliesHC, HCTHigh-speed CMOSTTL compatibleVHC, VHCT (very)AHC, AH
7、CT (advanced)FCT, FCT-T3.10.6 TTL FamiliesH (high-speed)S (Schottky)L, LS (low-power)A, AS, ALS (advanced) F (fast)7454Part Number: FAM nn function Jin. UESTC14Review of Chapter 3Logic Signals and GatesPositive Logic and Negative LogicBasic building blocks AND, OR, NOTCMOS LogicInverter, NAND, NOR,
8、AND-OR-INVERTFan-in, non-inverting GatesSteady-State Electrical BehaviorLogic levels and noise marginsEffects of loading, Nonideal inputs, Unused InputsJin. UESTC15Review of Chapter 2Steady-State Electrical BehaviorCurrent Driving CapabilityDynamic Electrical BehaviorSpeed and Power ConsumptionOther
9、 CMOS Input and Output StructuresTransmission Gates, Schmitt-Trigger InputsThree-State Outputs, Open-Drain OutputsLogic Family: CMOS and TTLResistive LoadsGate Loads, Fanout16Jin. UESTCChapter 4 Combinational Logic Design PrinciplesBasic Logic AlgebraCombinational-Circuit AnalysisCombinational-Circu
10、it SynthesisDigital Logic Design and ApplicationJin. UESTC17Basic ConceptsTwo types of logic circuits:combinational logic circuitsequential logic circuitOutputs depend only on its current inputs.Outputs depends not only on the current inputs but also on the past sequence of inputs.A combinational ci
11、rcuit dont contain feedback loops which generally create sequential circuit behavior.Jin. UESTC184.1 Switching Algebra4.1.1 AxiomsX = 0, if X 1X = 1, if X 00 = 11 = 000 = 01+1 = 111 = 10+0 = 001 = 10 = 01+0 = 0+1 = 1F = 0 + 1 ( 0 + 1 0 ) = 0 + 1 1= 0a.k.a. “Boolean algebra”Jin. UESTC194.1.2 Single-V
12、ariable TheoremsIdentities(自等律): X+0=XX1=XNull Elements(0-1律): X+1=1X0=0Involution(還原律): ( X ) = XIdempotency(同一律): X+X=XXX=XComplements(互補律): X+X=1XX=0The relationship between variable and constantThe relationship between variable and itselfJin. UESTC204.1.3 Two- and Three-Variable TheoremsSimilar
13、relationships with general algebraCommutativity (交換律) AB = BAA+B = B+AAssociativity (結(jié)合律) A(BC) = (AB)CA+(B+C) = (A+B)+CDistributivity (分配律) A(B+C) = AB+BCA+BC = (A+B)(A+C) Proved by truth table.Jin. UESTC21Notices允許提取公因子 AB + AC = A(B+C)不存在變量的指數(shù) AAA A3沒有定義除法 if AB=BC A=C ? 沒有定義減法 if A+B=A+C B=C ?A=
14、1, B=0, C=0AB=AC=0, ACA=1, B=0, C=1錯!錯!Jin. UESTC224.1.3 Two- and Three-Variable TheoremsCovering (吸收律)X + XY = X X(X+Y) = XCombining (組合律)XY + XY = X (X+Y)(X+Y) = XConsensus (添加律/一致性定理)XY + XZ + YZ = XY + XZ(X+Y)(X+Z)(Y+Z) = (X+Y)(X+Z)Some Special Relationships 對偶 Jin. UESTC23對上述的公式、定理要熟記,做到舉一反三 (X
15、+Y) + (X+Y) = 1A + A = 1XY + XY = X(A+B)(A(B+C) + (A+B)(A(B+C) = (A+B)代入定理: 在含有變量 X 的邏輯等式中,如果將式中所有出現(xiàn) X 的地方都用另一個表達(dá)式 F 來代替,則等式仍然成立。Jin. UESTC24To prove: XY + XZ + YZ = XY + XZYZ = 1YZ = (X+X)YZXY + XZ + (X+X)YZ= XY + XZ + XYZ +XYZ= XY(1+Z) + XZ(1+Y)= XY + XZJin. UESTC254.1.4 n-Variable TheoremsGeneral
16、ized idempotency theorem 廣義同一律X + X + + X = X X X X = XShannons expansion theorem 香農(nóng)展開定理F(X1, X2, , Xn)= X1 F(1,X2,Xn) + X1 F(0,X2,Xn)= X1 + F(0,X2,Xn) X1 + F(1,X2,Xn) Jin. UESTC26To prove: AD + AC + CD + ABCD = AD + AC= A ( 1D + 1C + CD + 1BCD ) + A ( 0D + 0C + CD + 0BCD )= A ( D + CD + BCD ) + A (
17、 C + CD )= AD( 1 + C + BC ) + AC( 1 + D )= AD + ACJin. UESTC274.1.4 n-Variable TheoremsDeMorgans Theorem 摩根定理 Complement Theorem 反演定理 (A B) = A + B(A + B) = A B回顧線與Jin. UESTC28DeMorgan SymbolsJin. UESTC294.1.4 n-Variable TheoremsComplement of a logic expression: , 0 1, Complementing all VariablesKee
18、p the previous priorityNotice the out of parenthesesExample1: Write the complement function for each of the following logic functions.F1 = A(B+C)+CDF2 = (AB)+CDE 合理地運用反演定理能夠?qū)⒁恍﹩栴}簡化 Example2: Prove that (AB + AC) = AB + ACJin. UESTC30Example1: Write the complement function for each of the following l
19、ogic functions.F1 = A(B+C)+CDF2 = (AB)+CDEF1 = (A+BC)(C+D)F2 = (A+B)(C+D+E)F2 = AB(C+D+E)AB + AC + BC = AB + AC(A+B)(A+C)AA +AC + AB + BCAC + AB AC + AB + BCExample2: Prove (AB + AC) = AB + ACJin. UESTC314.1.5 DualityDuality Rule , 0 1 Keep the previous priorityExample: Write the Duality function fo
20、r each of the following Logic functions. F1 = A+B(C+D) F2 = ( A(B+C) + (C+D) )X(X+Y) = X FD(X1 , X2 , , Xn , + , , ) = F(X1 , X2 , , Xn , , + , ) 回顧公理、定理Counterexample: X+XY = XXX+Y = X X+Y = XJin. UESTC324.1.5 DualityDuality Rule , 0 1Keep the previous priorityPrinciple of Duality Any logic equatio
21、n remains true if the duals of it is true. To prove: A+BC = (A+B)(A+C)A(B+C)AB+ACJin. UESTC33Example: Write the Duality function for each of the following Logic functions. F1 = A+B(C+D)F2 = ( A(B+C) + (C+D) )F1D = A(B+CD)F2D = ( (A+BC) (CD) )Jin. UESTC34Duality and ComplementDuality: FD(X1 , X2 , ,
22、Xn , + , , ) = F(X1 , X2 , , Xn , , + , ) Complement: F(X1 , X2 , , Xn , + , ) = F(X1 , X2, , Xn , , + ) F(X1 , X2 , , Xn) = FD(X1 , X2, , Xn ) The relation between the positive-logic convention and the negative-logic convention is duality.Jin. UESTC35The relation between the positive-logic conventi
23、on and the negative-logic convention is duality.G1ABFA B FL L LL H LH L LH H Helectrical functionA B F0 0 00 1 01 0 01 1 1positive logicA B F1 1 11 0 10 1 10 0 0negative logicF = ABF = A+BJin. UESTC36More definitionsLiteral: a variable or its complement such as X, X, CS_LExpression: literals combined by AND, OR, parentheses, complementation( FREDZ + CS_LABC + Q5 )RESET Product term: PQRSum term: X+Y+ZSum-of-products expression: A + BC + ABC Product-of
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漯河食品職業(yè)學(xué)院《公共關(guān)系學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年汕頭交通運輸從業(yè)資格證怎樣考試
- 2024年新三板股份購買合同專業(yè)模板版B版
- 2024年二零二四年度鐵藝大門安裝與保養(yǎng)服務(wù)合同3篇
- 2025年恩施貨運從業(yè)資格證考試題庫
- 2024年標(biāo)準(zhǔn)水泥穩(wěn)定碎石層施工合作合同一
- 2024年度特色小鎮(zhèn)商品房買賣合同GF-01713篇
- 2024年建筑腳手架租賃及保險合同標(biāo)準(zhǔn)范本版B版
- 兒童生長發(fā)育診所醫(yī)生招聘合同
- 城市防毒施工合同
- 國開2023年春《人文英語4》機考網(wǎng)考期末復(fù)習(xí)資料參考答案
- DB3716-T 27-2023鄉(xiāng)鎮(zhèn)級應(yīng)急物資配備指南
- 員工食堂承包合同、考核細(xì)則、考核評分表
- 小學(xué)生相聲劇本(10篇)
- 2023-2024學(xué)年山東省膠州市初中語文九年級上冊期末自測測試題
- 人力資源專員招聘筆試題
- LY/T 1646-2005森林采伐作業(yè)規(guī)程
- GB/T 7531-2008有機化工產(chǎn)品灼燒殘渣的測定
- GB/T 19963.1-2021風(fēng)電場接入電力系統(tǒng)技術(shù)規(guī)定第1部分:陸上風(fēng)電
- GB/T 13586-2006鋁及鋁合金廢料
- 二年級上冊數(shù)學(xué)試題-應(yīng)用題復(fù)習(xí)6-人教新課標(biāo)(2014秋)(無答案)
評論
0/150
提交評論