![高考數(shù)學各地試題知識點分類匯編6立體幾何_第1頁](http://file4.renrendoc.com/view/f944e47dc93f682025990f5c6f86b090/f944e47dc93f682025990f5c6f86b0901.gif)
![高考數(shù)學各地試題知識點分類匯編6立體幾何_第2頁](http://file4.renrendoc.com/view/f944e47dc93f682025990f5c6f86b090/f944e47dc93f682025990f5c6f86b0902.gif)
![高考數(shù)學各地試題知識點分類匯編6立體幾何_第3頁](http://file4.renrendoc.com/view/f944e47dc93f682025990f5c6f86b090/f944e47dc93f682025990f5c6f86b0903.gif)
![高考數(shù)學各地試題知識點分類匯編6立體幾何_第4頁](http://file4.renrendoc.com/view/f944e47dc93f682025990f5c6f86b090/f944e47dc93f682025990f5c6f86b0904.gif)
![高考數(shù)學各地試題知識點分類匯編6立體幾何_第5頁](http://file4.renrendoc.com/view/f944e47dc93f682025990f5c6f86b090/f944e47dc93f682025990f5c6f86b0905.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、1.【2016高考新課標1文數(shù)】如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條相互垂直的半徑.若該幾何體的體積是EQ F(28,3),則它的表面積是( )(A)17 (B)18 (C)20 (D)28 【答案】A【解析】考點:三視圖及球的表面積與體積【名師點睛】由于三視圖能有效的考查學生的空間想象能力,所以以三視圖為載體的立體幾何題基本上是高考每年必考內容,高考試題中三視圖一般常與幾何體的表面積與體積交匯.由三視圖還原出原幾何體,是解決此類問題的關鍵.2.【2016高考新課標1文數(shù)】平面過正文體ABCDA1B1C1D1的頂點A,則m,n所成角的正弦值為( )(A) (B) (C) (D
2、)【答案】A【解析】【名師點睛】求解本題的關鍵是作出異面直線所成角,求異面直線所成角的步驟是:平移定角、連線成形,解形求角、得鈍求補.3.【2016高考上海文科】如圖,在正方體ABCDA1B1C1D1中,E、F分別為BC、BB1的中點,則下列直線中與直線EF相交的是( ) (A)直線AA1 (B)直線A1B1 (C)直線A1D1 (D)直線B1C1【答案】D【解析】考點:1.正方體的幾何特征;2.直線與直線的位置關系.【名師點睛】本題以正方體為載體,研究直線與直線的位置關系,突出體現(xiàn)了高考試題的基礎性,題目不難,能較好的考查考生分析問題解決問題的能力、空間想象能力等.4.【2016高考浙江文數(shù)
3、】已知互相垂直的平面交于直線l.若直線m,n滿足m,n,則( )A.ml B.mn C.nl D.mn【答案】C【解析】試題分析:由題意知,故選C考點:線面位置關系.【思路點睛】解決這類空間點、線、面的位置關系問題,一般是借助長方體(或正方體),能形象直觀地看出空間點、線、面的位置關系5.【2016高考天津文數(shù)】將一個長方形沿相鄰三個面的對角線截去一個棱錐,得到的幾何體的正視圖與俯視圖如圖所示,則該幾何體的側(左)視圖為( )【答案】B考點:三視圖【名師點睛】1.解答此類題目的關鍵是由多面體的三視圖想象出空間幾何體的形狀并畫出其直觀圖2三視圖中“正側一樣高、正俯一樣長、俯側一樣寬”,因此,可以
4、根據(jù)三視圖的形狀及相關數(shù)據(jù)推斷出原幾何圖形中的點、線、面之間的位置關系及相關數(shù)據(jù)6. 2016高考新課標文數(shù)如圖,網格紙上小正方形的邊長為1,粗實現(xiàn)畫出的是某多面體的三視圖,則該多面體的表面積為( )(A) (B) (C)90 (D)81【答案】B【解析】試題分析:由三視圖該幾何體是以側視圖為底面的斜四棱柱,所以該幾何體的表面積,故選B考點:空間幾何體的三視圖及表面積【技巧點撥】求解多面體的表面積及體積問題,關鍵是找到其中的特征圖形,如棱柱中的矩形,棱錐中的直角三角形,棱臺中的直角梯形等,通過這些圖形,找到幾何元素間的關系,建立未知量與已知量間的關系,進行求解7.【2016高考山東文數(shù)】一個由
5、半球和四棱錐組成的幾何體,其三視圖如圖所示.則該幾何體的體積為( )(A)(B)(C)(D)【答案】C【解析】考點:1.三視圖;2.幾何體的體積.【名師點睛】本題主要考查三視圖及幾何體的體積計算,本題涉及正四棱錐及球的體積計算,綜合性較強,較全面的考查考生的視圖用圖能力、空間想象能力、數(shù)學基本計算能力等.8.【2016高考山東文數(shù)】已知直線a,b分別在兩個不同的平面,內,則“直線a和直線b相交”是“平面和平面相交”的( )(A)充分不必要條件(B)必要不充分條件(C)充要條件 (D)既不充分也不必要條件【答案】A【解析】考點:1.充要條件;2.直線與平面的位置關系.【名師點睛】充要條件的判定問
6、題,是高考??碱}目之一,其綜合性較強,易于和任何知識點結合.本題涉及直線與平面的位置關系,突出體現(xiàn)了高考試題的基礎性,能較好的考查考生分析問題解決問題的能力、空間想象能力等.9. 2016高考新課標文數(shù)在封閉的直三棱柱內有一個體積為的球,若,則的最大值是( )(A)4 (B) (C)6 (D) 【答案】B【解析】試題分析:要使球的體積最大,必須球的半徑最大由題意知球的與直三棱柱的上下底面都相切時,球的半徑取得最大值,此時球的體積為,故選B考點:1、三棱柱的內切球;2、球的體積【思維拓展】立體幾何是的最值問題通常有三種思考方向:(1)根據(jù)幾何體的結構特征,變動態(tài)為靜態(tài),直觀判斷在什么情況下取得最
7、值;(2)將幾何體平面化,如利用展開圖,在平面幾何圖中直觀求解;(3)建立函數(shù),通過求函數(shù)的最值來求解10.【2016高考浙江文數(shù)】某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是_cm2,體積是_cm3.【答案】80;40【解析】考點:三視圖.【方法點睛】解決由三視圖求空間幾何體的表面積與體積問題,一般是先根據(jù)三視圖確定該幾何體的結構特征,再準確利用幾何體的表面積與體積公式計算該幾何體的表面積與體積11.【2016高考浙江文數(shù)】如圖,已知平面四邊形ABCD,AB=BC=3,CD=1,AD=,ADC=90沿直線AC將ACD翻折成,直線AC與所成角的余弦的最大值是_【答案】【解析】試
8、題分析:設直線與所成角為設是中點,由已知得,如圖,以為軸,為軸,過與平面垂直的直線為軸,建立空間直角坐標系,由,作于,翻考點:異面直線所成角.【思路點睛】先建立空間直角坐標系,再計算與平行的單位向量和,進而可得直線與所成角的余弦值,最后利用三角函數(shù)的性質可得直線與所成角的余弦值的最大值12.【2016高考四川文科】已知某三菱錐的三視圖如圖所示,則該三菱錐的體積 .【答案】【解析】考點:1.三視圖;2.幾何體的體積.【名師點睛】本題考查三視圖,考查幾何體體積,考查學生的識圖能力解題時要求我們根據(jù)三視圖想象出幾何體的形狀,由三視圖得出幾何體的尺寸,為此我們必須掌握基本幾何體(柱、錐、臺、球)的三視
9、圖以及各種組合體的三視圖13.【2016高考北京文數(shù)】某四棱柱的三視圖如圖所示,則該四棱柱的體積為_.【答案】【解析】試題分析:四棱柱高為1,底面為等腰梯形,面積為,因此體積為考點:三視圖【名師點睛】解決此類問題的關鍵是根據(jù)幾何體的三視圖判斷幾何體的結構特征.常見的有以下幾類:三視圖為三個三角形,對應的幾何體為三棱錐;三視圖為兩個三角形,一個四邊形,對應的幾何體為四棱錐;三視圖為兩個三角形,一個圓,對應的幾何體為圓錐;三視圖為一個三角形,兩個四邊形,對應的幾何體為三棱柱;三視圖為三個四邊形,對應的幾何體為四棱柱;三視圖為兩個四邊形,一個圓,對應的幾何體為圓柱.14.【2016高考新課標1文數(shù)】
10、(本題滿分12分)如圖,在已知正三棱錐P-ABC的側面是直角三角形,PA=6,頂點P在平面ABC內的正投影為點E,連接PE并延長交AB于點G.(= 1 * ROMANI)證明G是AB的中點;(= 2 * ROMANII)在答題卡第(18)題圖中作出點E在平面PAC內的正投影F(說明作法及理由),并求四面體PDEF的體積【答案】(= 1 * ROMANI)見解析(= 2 * ROMANII)作圖見解析,體積為【解析】所以平面,故又由已知可得,從而是的中點. (II)在平面內,過點作的平行線交于點,即為在平面內的正投影.理由如下:由已知可得,又,所以,因此平面,即點為在平面內的正投影.連接,因為在
11、平面內的正投影為,所以是正三角形的中心.由(I)知,是的中點,所以在上,故由題設可得平面,平面,所以,因此由已知,正三棱錐的側面是直角三角形且,可得 在等腰直角三角形中,可得所以四面體的體積考點:線面位置關系及幾何體體積的計算【名師點睛】文科立體幾何解答題主要考查線面位置關系的證明及幾何體體積的計算,空間中線面位置關系的證明主要包括線線、線面、面面三者的平行與垂直關系,其中推理論證的關鍵是結合空間想象能力進行推理,要防止步驟不完整或考慮不全致推理片面,該類題目難度不大,以中檔題為主.15.2016高考新課標文數(shù)如圖,四棱錐中,平面,為線段上一點,為的中點(I)證明平面;(II)求四面體的體積.
12、【答案】()見解析;()【解析】()因為平面,為的中點,所以到平面的距離為. .9分取的中點,連結.由得,.由得到的距離為,故,所以四面體的體積. .12分考點:1、直線與平面間的平行與垂直關系;2、三棱錐的體積【技巧點撥】(1)證明立體幾何中的平行關系,常常是通過線線平行來實現(xiàn),而線線平行常常利用三角形的中位線、平行四邊形與梯形的平行關系來推證;(2)求三棱錐的體積關鍵是確定其高,而高的確定關鍵又推出頂點在底面上的射影位置,當然有時也采取割補法、體積轉換法求解16.【2016高考北京文數(shù)】(本小題14分)如圖,在四棱錐中,平面,( = 1 * ROMAN I)求證:;( = 2 * ROMA
13、N II)求證:;(III)設點E為AB的中點,在棱PB上是否存在點F,使得平面?說明理由.【答案】()見解析;()見解析;(III)存在.理由見解析.【解析】所以所以平面所以平面平面考點:空間垂直判定與性質;空間想象能力,推理論證能力【名師點睛】平面與平面垂直的性質的應用:當兩個平面垂直時,常作的輔助線是在其中一個面內作交線的垂線,把面面垂直轉化為線面垂直,進而可以證明線線垂直(必要時可以通過平面幾何的知識證明垂直關系),構造(尋找)二面角的平面角或得到點到面的距離等.17.【2016高考山東文數(shù)】(本小題滿分12分)在如圖所示的幾何體中,D是AC的中點,EFDB.(= 1 * ROMANI
14、)已知AB=BC,AE=EC.求證:ACFB;(= 2 * ROMANII)已知G,H分別是EC和FB的中點.求證:GH平面ABC.【答案】()證明:見解析;()見解析.【解析】考點:1.平行關系;2.垂直關系.【名師點睛】本題主要考查直線與直線垂直、直線與平面平行.此類題目是立體幾何中的基本問題.解答本題,關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,給出規(guī)范的證明.本題能較好的考查考生的空間想象能力、邏輯推理能力及轉化與化歸思想等.18.【2016高考天津文數(shù)】(本小題滿分13分)如圖,四邊形ABCD是平行四邊形,平面AED平面ABCD,EF|AB,AB=2
15、,BC=EF=1,AE=,DE=3,BAD=60,G為BC的中點.()求證:平面BED;()求證:平面BED平面AED;()求直線EF與平面BED所成角的正弦值.【答案】()詳見解析()詳見解析()【解析】試題分析:()證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行尋找與論證,往往結合平幾知識,如本題構造一個平行四邊形:取的中點為,可證四邊形是平行四邊形,從而得出()面面垂直的證明,一般轉化為證線面垂直,而線面垂直的證明,往往需多次利用線面垂直判定與性質定理,而線線垂直的證明有時需要利用平幾條件,如本題可由余弦定理解出,即()求線面角,關鍵作出射影,即面的垂線,可
16、利用面面垂直的性質定理得到線面垂直,即面的垂線:過點作于點,則平面,從而直線與平面所成角即為.再結合三角形可求得正弦值試題解析:()證明:取的中點為,連接,在中,因為是的中點,所以且,又因為,所以且,即四邊形是平行四邊形,所以,又平面,平面,所以平面.考點:直線與平面平行和垂直、平面與平面垂直、直線與平面所成角【名師點睛】垂直、平行關系證明中應用轉化與化歸思想的常見類型.(1)證明線面、面面平行,需轉化為證明線線平行.(2)證明線面垂直,需轉化為證明線線垂直.(3)證明線線垂直,需轉化為證明線面垂直.(4)證明面面垂直,需轉化為證明線面垂直,進而轉化為證明線線垂直.19.【2016高考浙江文數(shù)
17、】(本題滿分15分)如圖,在三棱臺ABC-DEF中,平面BCFE平面ABC,ACB=90,BE=EF=FC=1,BC=2,AC=3.(I)求證:BF平面ACFD;(II)求直線BD與平面ACFD所成角的余弦值.【答案】(I)證明見解析;(II).【解析】考點:空間點、線、面位置關系、線面角.【方法點睛】解題時一定要注意直線與平面所成的角的范圍,否則很容易出現(xiàn)錯誤證明線面垂直的關鍵是證明線線垂直,證明線線垂直常用的方法是直角三角形、等腰三角形的“三線合一”和菱形、正方形的對角線20.【2016高考上海文科】(本題滿分12分)將邊長為1的正方形AA1O1O(及其內部)繞OO1旋轉一周形成圓柱,如圖
18、, 長為 ,長為,其中B1與C在平面AA1O1O的同側.(1)求圓柱的體積與側面積;(2)求異面直線O1B1與OC所成的角的大小. 【答案】(1);(2)【解析】考點:1.幾何體的體積;2.空間的角.【名師點睛】此類題目是立體幾何中的常見問題.解答本題,關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,將空間問題轉化成平面問題.立體幾何中的角與距離的計算問題,往往可以利用幾何法、空間向量方法求解,應根據(jù)題目條件,靈活選擇方法.本題能較好的考查考生的空間想象能力、邏輯推理能力轉化與化歸思想及基本運算能力等.21.【2016高考四川文科】(12分)如圖,在四棱錐P-ABCD中,PAC
19、D,ADBC,ADC=PAB=90,.(I)在平面PAD內找一點M,使得直線CM平面PAB,并說明理由; (II)證明:平面PAB平面PBD.【答案】()取棱AD的中點M,證明詳見解析;()證明詳見解析.【解析】( = 1 * ROMAN I)取棱AD的中點M(M平面PAD),點M即為所求的一個點.理由如下:因為ADBC,BC=AD,所以BCAM, 且BC=AM.所以四邊形AMCB是平行四邊形,從而CMAB.又AB 平面PAB,CM 平面PAB,所以CM平面PAB.(說明:取棱PD的中點N,則所找的點可以是直線MN上任意一點)考點:線面平行、線線平行、線線垂直、線面垂直.【名師點睛】本題考查線面平行、面面垂直的判斷,考查空間想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年紅磷阻燃母粒項目可行性研究報告
- 2025年電動車減震項目可行性研究報告
- 2025年泡泡紗布項目可行性研究報告
- 2025至2031年中國柜臺鏡行業(yè)投資前景及策略咨詢研究報告
- 2025年懸壁梁式傳感器項目可行性研究報告
- 2025至2031年中國可調腹肌訓練器行業(yè)投資前景及策略咨詢研究報告
- 2025年三乙二醇雙異辛酸酯項目可行性研究報告
- 2025至2030年中國雪松苗木數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國銅沖片接觸腳數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年紅外線自動門項目投資價值分析報告
- (更新版)HCIA安全H12-711筆試考試題庫導出版-下(判斷、填空、簡答題)
- 糖尿病運動指導課件
- 蛋白表達及純化課件
- 完整版金屬學與熱處理課件
- T∕CSTM 00640-2022 烤爐用耐高溫粉末涂料
- 304不銹鋼管材質證明書
- 民用機場不停航施工安全管理措施
- 港口集裝箱物流系統(tǒng)建模與仿真技術研究-教學平臺課件
- 新教科版2022年五年級科學下冊第2單元《船的研究》全部PPT課件(共7節(jié))
- QTD01鋼質焊接氣瓶檢驗工藝指導書
- 人教版七年級英語下冊全冊英語單詞默寫直接打印
評論
0/150
提交評論