金融計量學(xué)-因果檢驗_第1頁
金融計量學(xué)-因果檢驗_第2頁
金融計量學(xué)-因果檢驗_第3頁
金融計量學(xué)-因果檢驗_第4頁
金融計量學(xué)-因果檢驗_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、實驗四 金融數(shù)據(jù)的平穩(wěn)性檢驗實驗一、實驗?zāi)康睦斫饨?jīng)濟時間序列存在的不平穩(wěn)性,掌握ADF檢驗平穩(wěn)性的方法。認識不平穩(wěn)的序列 容易導(dǎo)致偽回歸問題,掌握為解決偽回歸問題引出的協(xié)整檢驗,協(xié)整的概念和具體的協(xié)整檢 驗過程。協(xié)整描述了變量之間的長期關(guān)系,為了進一步研究變量之間的短期均衡是否存在, 掌握誤差糾正模型方法。理解變量之間的因果關(guān)系的計量意義,掌握格蘭杰因果檢驗方法。二、基本概念如果一個隨機過程的均值和方差在時間過程上都是常數(shù),并且在任何兩時期的協(xié)方差值 僅依賴于該兩時期間的距離或滯后,而不依賴于計算這個協(xié)方差的實際時間,就稱它為平穩(wěn) 的。強調(diào)平穩(wěn)性是因為將一個隨機游走變量(即非平穩(wěn)數(shù)據(jù))對另一個

2、隨機游走變量進行回 歸可能導(dǎo)致荒謬的結(jié)果,傳統(tǒng)的顯著性檢驗將告知我們變量之間的關(guān)系是不存在的。這種情 況就稱為“偽回歸”(Spurious Regression)。有時雖然兩個變量都是隨機游走的,但它們的某個線形組合卻可能是平穩(wěn)的,在這種情 況下,我們稱這兩個變量是協(xié)整的。因果檢驗用于確定一個變量的變化是否為另一個變量變化的原因。三、實驗內(nèi)容用Eviews來分析A股不同行業(yè)的兩只股票,對數(shù)據(jù)進行平穩(wěn)性檢驗。四、實驗指導(dǎo):1、對數(shù)據(jù)進行平穩(wěn)性檢驗:首先導(dǎo)入數(shù)據(jù),將股票SHA和SZA輸入(若已有wf1文件則直接打開該文件)。在workfile中按住ctrl選擇要檢驗的二變量,右擊,選擇openas

3、 group。則此時可在 彈出的窗口中對選中的變量進行檢驗。檢驗方法有:畫折線圖:“View”一graph”一Tine”,如圖1所示。畫直方圖:在workfile中按住選擇要檢驗的變量,右擊,選擇open,或雙擊選中的 變量,“view” “descriptive statistic”一histogram and stats”;注意到圖中的J.B.統(tǒng)計量, 其越趨向于0,則圖越符合正態(tài)分布,也就說明數(shù)據(jù)越平穩(wěn)。如圖2和3所示。用ADF檢驗:方法一:“view”一 unit root test”;方法二:點擊菜單中的“quick”一 “ series statistic” 一 “ unit ro

4、ot test ”;分析原則即比較值的大小以及經(jīng)驗法則。EievsISeries: SHA Torkfihe: UNTIJLED1 FileObj sets Vi ew Procs 里uiek Oti ore Window HelpVi ew I Procs I Llbj ectsEditPrintiNameiFreezeI Sample IGenrI Sheet I Stats IIdentI Line I Bar I200 h150-100-Series: SHASample W1/1993 12/31/1999Observations 1826MeanMedianSHA原始數(shù)值.直方圖m

5、Minimum1031.629 1006.362 1842.610328.8480Torkfile: UKTITLEDI I File Edi t Obj ects Vi ew Procs Quick Oji+iotle Wiridow HelpVi e,i*i, I Procs I Obj ectsFrint N:=iirie Freeze I SipleJ Gem- Sheet I Stats I IilerLt 1 Litlh E:=lt的數(shù)Eview時,300250200a阻據(jù)fS中的ogShaSeries: SZASample 1AJ1 /1993 12/31 /1999Observ

6、ations 1826并不平穩(wěn)。此時孫的數(shù)據(jù),一企贏圖3 SZA原始數(shù)值直方|圖297.9938Median319.4905Maximum561.5640對數(shù)的好處在于日;即可以 再對新變量進行平穩(wěn)性度據(jù)取對數(shù)(取 后面的取差分), s” 鍵入 logsha= 穩(wěn)性檢驗方og聊a),同樣的方法得到i(法如上,r發(fā)現(xiàn)也是不平穩(wěn)的。PrnhAhilrtwIllllll間距很大 驗。點擊 gsza。此匕rlogsna 和 logsza的關(guān)鍵值來得出結(jié)論。如圖對SZA檢驗結(jié)果中所示,檢驗值小于關(guān)鍵值,則得出數(shù)據(jù)不平穩(wěn),反之平穩(wěn)。ADF Test Statistic -1.2361191% Critic

7、al Value* -3.43695% Critical Value-2.863610% Critical Value-2.5679*MacKinnon critical values for rejection of hypothesis of a unit root.Augmented Dickey-Fuller Test EquationDependent Variable: D(LOGSZA)Method: Least SquaresDate: 02/14/07 Time: 09:43Sample(adjusted): 1/08/1993 12/31/1999Included obse

8、rvations: 1821 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb.LOGSZA(-1)-0.0016450.001331-1.2361190.2166D(LOGSZA(-1)-0.0106390.023402-0.4546000.6495D(LOGSZA(-2)0.0436710.0233911.8669820.0621D(LOGSZA(-3)0.0332840.0233931.4228250.1550D(LOGSZA(-4)0.0782840.0233923.3466590.0008C0.

9、0094040.0074631.2600370.2078R-squared0.009984Mean dependent var0.000252Adjusted R-squared0.007257S.D. dependent var0.027998S.E. of regression0.027897Akaike info criterion-4.317335Sum squared resid1.412468Schwarz criterion-4.299190Log likelihood3936.934F-statistic3.660782Durbin-Watson stat _2.001713_

10、Prob(F-statistic)_0.002675圖5SZA對數(shù)值的ADF檢驗結(jié)果卻 E.lm 1 1Q0DOb&efvatiDns 10SDMe-an3135.458Median3158.597MaDcimum51 6.350Minimum2003.487Std. Dar.559.B19D0.376135Kurtrsis4.Q&4S75Jarqu-BE-ra1 37.BS4Pra-babilityo.aocooo腿?。篠2ASample1 1000Obiwsti&ns 10DDMean10633.5-9M-edisn1C5B4.&SM-aximLm1-809S.27M in imum715

11、1.1S0Std. Dev.1-S57.77SShewn bss0.S 07796KurtMis5.416745Jarq u e-B era352 1&B-Probs bi lityO.ODDOOOVa liableCoefficientStd. ErrorProb.SHA(-1)-0.0044-04-0 003064-1.47 4640.15090.1083360.03U&43.4443150.0006D(SHA(-2)-0.0867190.031635-2.7409540.0062D(SHA(-3)0.0206110.0316230.8&17B10.5147D(SHA(-4)0.15580

12、.031 4-664 9523890.0000C12.997599.7661831.3308770.1B35R-squared0.045S71Mean dependentvar-1.030000Adjusted R-squared0.0410+7SLD. dependentvar54.766B3S.E. of regression53.63103Maike info criterion10.30814Sum squared reid234+643.Schwarz, crite rion10.33771Log likelihood-5371.052Hannan-Cluinn criter.10.

13、S193SF-stati stic9.E0951JDurbin-Watson stat1.998692Pro tv(F-5tati stie0.000030VariableCoefficientStd. Errort-StatisticProb.SZA-1)-0.0057820.003-555-1.6265100.1042DSZAt-10.1056710.0315663M75710.0008C5HL7253935.339861.5297110.1264R-squared0.013063Mean dependentvar-3.114484Adjusted R-squared0.011079SLD

14、 dependentvar2091403S.E. of regression207.9785Akaike infa criterion13.51575Sum squared re-sid43038795Schwarz criterion13.53050Log likelihood-674135&Hannan-Quinn criter.13.52135F-stati sticBL5B4K3SDurbin-Watson stat-1.986906Pro tv(F-5tati stic)0.001W100200300400500600700 SOO 9001000LOGSZA LOGSHAAugme

15、nted Di ckey-Fu 11 er test stati sti c-0594408Ci.8692Test critical values:1?4i level-3.4366765% level-2.S6422210% level-2.568250MacKinnon (1996 one-si de dp-values.Augmented D i ckey-Fu 11 e r Tet E q u ati o n Dependentvariable: D(LDGSHA) Method: Least Squares Date: 05/16/18 Time: 11:28 Sample (adj

16、usted): 2 1000Included observations: 999 after adjustmentsVariableCoefficientStd. Error t-StatisticProb.LOGSHA-1)-0.0016030.002697-0.5944080.5524C0.0124-730.0216760.5756660.5650R-sq uared0.000354Mean dependentvar-0.000403Adjusted R-squared-0.000643SLD dependentvar0.015548S E. of regression0.0155&4Ak

17、a ike info criterion-5.487058Sum squared resid0.241187Schwarz criterion-5.477235Lag likelihood2742.785Hannan-Ouinn criter.-5.483324F-statistic0353321Durbin-Watson stat1.851141ProbfF-statistic)0.55274Null Hypothesis: LQGSZA has a unit rootExogenous: ConstantLag Length: 0 (Automatic - based on SIC, ma

18、xlag =21)t-StatisticProb?Augmented Dickey-Fuller test statistic-1.0943130.71 琳Test critical values:IK level-3.4366765% level-2.S6422210% level-2.56325-0MacKinnon (1995) one-sidled p-values.Augmented Dickey-Fuller Teat Equation ependentVariable: D(LOGSZA Method: Least Squares ate: 05/16/18 Time: 1113

19、2 Sample (adjusted): 2 1000Included observations: 999 after adjustmentsVariableCoefficient&td. Error1-StatistieProb.LOGSZA-1)-0.00J&950.00284-1.09481 Jd.2739C0.0329280.0304031.003054Ci.2790R-squared0.001201Mean dependlent var-0.000352Adjusted R-squared0.000199S.D. dependle nt var0.017858S.E. of regr

20、e-ssionC-.017356Akaike info criterion-5.210967Sum squared resid0517076Schwarz criterion&20T144Log likelihood2604.S75Hannan-Quinn criter.-5.207233F-statistic1.198616Durbin-Wats&n stat1.853047Prob(F-statistie)0.273863Dependent Variable: LOGSHAMethod: Least Squaresate: 05/16/1B Time: 1135Sample: 1 1000

21、Included observations: 1OOOVariableCoefficientStd. Error t-statisticProb.C-1.59374-30.061025-26.116270.0000LOG泌1.0400840.006591157.79830.0000R-s:quared0.961465Mean dependlentvar5.0J4243Adjusted R-squared0.961426S.D. de pendent var0.132B19S. E. of regression0.035906Akaike infa criterion-3.813B29Sum s

22、quared resid1.286660Schwarz criterion-3.804013Log livelihood1908.914Hannan-Quinn criter.-3.810098F-stati-stic24900.+6Durbin-Watson stat0.045051Prob(F-statistic)0.000000Null Hypothesis: RESID01 has a unit rootExogenous: ConstantLag Length: 0 (Automatic - based on SIC, maxlag =21)t-StatisticProb/Augme

23、nted Dickey-Fuller test statistic-3.3236480.0141Test critical values:1?41 level-3.4366765% level-2.86422210% level-2.56S25-0MacKinnon (1996) one-sidled p-valuesAugmented Dickey-FullerTetEquation Dependent Variable: D(RESIDai;Method: Least SquaresDate: 05/16/18 Time: 11:33Sample (adjusted): 21000Incl

24、uded observations: 999 after adjusimentsVariableCoefficientStd. Errort-StatistieProb.RESID01(-1)-0.022228o.aosBS?-3.323648Ci.0009C-3.64E-050.000240-0.15179S0.8794R-squared0.010958Mean dependle nt war-3.71 E-05Adjusted Fi-squared0.009966S.D. dependentvar0.007621S.E. ofregression0.007&83Akaike info cr

25、iterion-6.923821Sum squared resid0.05729Schwarz criterion-6.91399SLog likelihoodJ46 0.449Hannan-CiLinn criter.-6.9200S7F-siati stic11.04663Durbin-Watson stat-1.943587Pro b(F-sta-ti stie0.000921殘差resid 01檢驗結(jié)果Null Hypothesis: RESID02 has a unit rootExogenous: ConstantLag Length: 0 (Automatic - based o

26、n SIC, maxlag =21;t-StatisticProb *Augmented Dickey-Fuller test statistic-13236430.0141Test critical values:I1% level-3.4366765% level-2S6422210% level-2.568250*MacKinnon (1996) one-sided p-valuesAugmented Dickey-Fuller Teat EquationependentVariable: D(RESIDQ2)Method; Least Squaresate: 05/16/18 Time

27、: 11:42Sample (adjusted: 21000Included observation.s: 999 after adjustmenteVariableCoefficientStd. Errort-StatisticProb.RESID 02(-1;-0.0222260.00&37-3.3236480.0009C-3.64E-050.000240-0.1517960.B794R-squared0 010958Mean dependent var-3-.71 E-05Adjusted R.-sqwared0.009966S.D. dependlentvar0.007621S.E. of regre-ssion0.007383Akai屈 info criterion-6.923S21Sum squared resid0.057329Schwarz criterion-6.913998Log likelihood3460 44-9Hannan-Quinn triter.-6.920

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論