版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、86空間向量及其運(yùn)算(教師獨(dú)具內(nèi)容)1了解空間直角坐標(biāo)系,會(huì)用空間直角坐標(biāo)系刻畫(huà)點(diǎn)的位置,會(huì)簡(jiǎn)單應(yīng)用空間兩點(diǎn)間的距離公式了解空間向量的概念,了解空間向量基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示2掌握空間向量的線性運(yùn)算及其坐標(biāo)表示,掌握空間向量的數(shù)量積及其坐標(biāo)表示了解空間向量投影的概念以及投影向量的意義能用向量的數(shù)量積判斷向量的共線與垂直理解直線的方向向量與平面的法向量能用向量語(yǔ)言表述線線、線面、面面的平行與垂直關(guān)系3重點(diǎn)提升數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng)(教師獨(dú)具內(nèi)容)本考點(diǎn)在高考中沒(méi)有單獨(dú)命題,一般作為工具與立體幾何知識(shí)結(jié)合考查,因此應(yīng)重點(diǎn)掌握空間向量的線性運(yùn)算,空間向量數(shù)量積
2、的定義,并能應(yīng)用空間向量的數(shù)量積判斷兩向量的共線與垂直(教師獨(dú)具內(nèi)容)1空間直角坐標(biāo)系與點(diǎn)的坐標(biāo)(1)空間一點(diǎn)M的坐標(biāo)可以用有序?qū)崝?shù)組eq o(,sup3(01)(x,y,z)表示(2)建立了空間直角坐標(biāo)系,空間中的點(diǎn)M與有序?qū)崝?shù)組(x,y,z)可以建立eq o(,sup3(02)一一對(duì)應(yīng)的關(guān)系2空間兩點(diǎn)間的距離公式、中點(diǎn)公式(1)距離公式設(shè)點(diǎn)A(x1,y1,z1),B(x2,y2,z2),則|AB|eq o(,sup3(01) eq r(x1x22y1y22z1z22);設(shè)點(diǎn)P(x,y,z),則與坐標(biāo)原點(diǎn)O之間的距離為|OP|eq o(,sup3(02)eq r(x2y2z2).(2)中點(diǎn)公
3、式設(shè)點(diǎn)P(x,y,z)為P1(x1,y1,z1),P2(x2,y2,z2)的中點(diǎn),則eq blcrc (avs4alco1(xf(x1x2,2),,yf(y1y2,2),,zf(z1z2,2).)3空間向量中的特殊向量名稱(chēng)概念零向量eq o(,sup3(01)模為0的向量單位向量eq o(,sup3(02)長(zhǎng)度(模)為1的向量相等向量eq o(,sup3(03)方向相同且模相等的向量相反向量eq o(,sup3(04)方向相反且模相等的向量共線向量eq o(,sup3(05)表示空間向量的有向線段所在的直線互相平行或重合的向量共面向量eq o(,sup3(06)平行于同一個(gè)平面的向量4空間向量
4、的有關(guān)定理概念語(yǔ)言描述共線向量定理對(duì)空間任意兩個(gè)向量a,b(b0),ab存在R,使ab共面向量定理如果兩個(gè)向量a,b不共線,那么向量p與向量a,b共面存在唯一的有序?qū)崝?shù)對(duì)(x,y),使peq o(,sup3(01)xayb推論:M,A,B是三個(gè)不共線的點(diǎn),則點(diǎn)P,M,A,B四點(diǎn)共面的充要條件是存在唯一實(shí)數(shù)對(duì)(x,y),使eq o(MP,sup6()xeq o(MA,sup6()yeq o(MB,sup6()空間向量基本定理如果三個(gè)向量a,b,c不共面,那么對(duì)空間任一向量p,存在唯一的有序?qū)崝?shù)組x,y,z,使得pxaybzc5空間向量的數(shù)量積及運(yùn)算律(1)數(shù)量積及相關(guān)概念兩向量的夾角:已知兩個(gè)非
5、零向量a,b,在空間任取一點(diǎn)O,作eq o(OA,sup6()a,eq o(OB,sup6()b,則AOB叫做向量a,b的夾角,記作a,b,其范圍是eq o(,sup3(01)0,如果a,beq f(,2),那么向量a,beq o(,sup3(02)互相垂直,記作ab.非零向量a,b的數(shù)量積ab|a|b|cosa,b(2)空間向量數(shù)量積的運(yùn)算律結(jié)合律:(a)b(ab),R;交換律:abba;分配律:(ab)cacbc.(3)數(shù)量積的性質(zhì)向量數(shù)量積的性質(zhì)垂直若a,b是非零向量,則abeq o(,sup3(03)ab0共線同向:ab|a|b|反向:ab|a|b|模aaeq o(,sup3(04)|
6、a|a|cosa,a|a|2;|a|eq r(aa);|ab|a|b|夾角為a,b的夾角,則coseq f(ab,|a|b|)(4)空間向量的坐標(biāo)表示及其應(yīng)用設(shè)a(a1,a2,a3),b(b1,b2,b3),ab(a1b1,a2b2,a3b3),a(a1,a2,a3)向量表示坐標(biāo)表示數(shù)量積abeq o(,sup3(05)a1b1a2b2a3b3共線ab(b0,R)eq o(,sup3(06)a1b1,a2b2,a3b3垂直ab0(a0,b0)eq o(,sup3(07)a1b1a2b2a3b30模|a|eq o(,sup3(08)eq r(aoal(2,1)aoal(2,2)aoal(2,3)
7、夾角余弦值cosa,beq f(ab,|a|b|)(a0,b0)eq o(,sup3(09)cosa,beq f(a1b1a2b2a3b3,r(aoal(2,1)aoal(2,2)aoal(2,3)r(boal(2,1)boal(2,2)boal(2,3)(5)投影向量向量a在向量b上的投影先將向量a與向量b平移到同一平面內(nèi),如圖1,向量c稱(chēng)為向量a在向量b上的投影向量向量a在直線l上的投影如圖2,向量c稱(chēng)為向量a在直線l上的投影向量a在平面上的投影如圖3,分別由向量a的起點(diǎn)A和終點(diǎn)B作平面的垂線,垂足分別為A,B,得到向量eq o(AB,sup6(),則向量eq o(AB,sup6()(a)
8、稱(chēng)為向量a在平面上的投影向量1思考辨析(正確的打“”,錯(cuò)誤的打“”)(1)對(duì)于非零向量b,若abbc,則ac.()(2)在空間直角坐標(biāo)系中,在yOz平面上的點(diǎn)的坐標(biāo)一定是(0,b,c)()(3)對(duì)空間任意兩個(gè)向量a,b,ab存在R,使ab.()(4)任何三個(gè)不共線的向量都可構(gòu)成空間向量的一個(gè)基底()答案(1)(2)(3)(4)2若a,b,c為空間向量的一個(gè)基底,則下列各項(xiàng)中,能構(gòu)成空間向量的基底的一組向量是()Aa,ab,abBb,ab,abCc,ab,abDab,ab,a2b答案C解析對(duì)于A,因?yàn)?ab)(ab)2a,所以a,ab,ab共面,不能構(gòu)成基底;對(duì)于B,因?yàn)?ab)(ab)2b,所
9、以b,ab,ab共面,不能構(gòu)成基底;對(duì)于C,若c,ab,ab共面,則c(ab)(ab)()a()b,則a,b,c共面,與a,b,c為空間向量的一個(gè)基底相矛盾,故c,ab,ab可以構(gòu)成空間向量的一個(gè)基底;對(duì)于D,a2beq f(3,2)(ab)eq f(1,2)(ab),所以ab,ab,a2b共面,不能構(gòu)成基底故選C.3在空間直角坐標(biāo)系中,已知A(1,2,3),B(2,1,6),C(3,2,1),D(4,3,0),則直線AB與CD的位置關(guān)系是()A垂直B平行C異面D相交但不垂直答案B解析由題意得,eq o(AB,sup6()(3,3,3),eq o(CD,sup6()(1,1,1),eq o(A
10、B,sup6()3eq o(CD,sup6(),eq o(AB,sup6()與eq o(CD,sup6()共線,又AB與CD沒(méi)有公共點(diǎn),ABCD.故選B.4已知a(2,1,3),b(1,2,1),若a(ab),則實(shí)數(shù)的值為()A2Beq f(14,3)Ceq f(14,5)D2答案D解析由題意知a(ab)0,即a2ab0,又a214,ab7,所以1470,所以2.5如圖,在三棱錐OABC中,點(diǎn)D是棱AC的中點(diǎn),若eq o(OA,sup6()a,eq o(OB,sup6()b,eq o(OC,sup6()c,則eq o(BD,sup6()等于()AabcBabcC.eq f(1,2)abeq f
11、(1,2)cDeq f(1,2)abeq f(1,2)c答案C解析由題意,在三棱錐OABC中,點(diǎn)D是棱AC的中點(diǎn),eq o(OA,sup6()a,eq o(OB,sup6()b,eq o(OC,sup6()c,eq o(BD,sup6()eq o(BO,sup6()eq o(OD,sup6(),eq o(BO,sup6()b,eq o(OD,sup6()eq f(1,2)eq o(OA,sup6()eq f(1,2)eq o(OC,sup6()eq f(1,2)aeq f(1,2)c,所以eq o(BD,sup6()eq f(1,2)abeq f(1,2)c.基礎(chǔ)知識(shí)鞏固考點(diǎn)空間向量的線性運(yùn)算
12、例1如圖,在三棱錐OABC中,M,N分別是OA,BC的中點(diǎn),G是ABC的重心,用基向量eq o(OA,sup6(),eq o(OB,sup6(),eq o(OC,sup6()表示eq o(OG,sup6(),則下列表示正確的是()A.eq f(1,4)eq o(OA,sup6()eq f(1,2)eq o(OB,sup6()eq f(1,3)eq o(OC,sup6()B.eq f(1,2)eq o(OA,sup6()eq f(1,2)eq o(OB,sup6()eq f(1,2)eq o(OC,sup6()Ceq f(1,6)eq o(OA,sup6()eq f(1,3)eq o(OB,su
13、p6()eq f(1,3)eq o(OC,sup6()D.eq f(1,3)eq o(OA,sup6()eq f(1,3)eq o(OB,sup6()eq f(1,3)eq o(OC,sup6()答案D解析eq o(MG,sup6()eq o(MA,sup6()eq o(AG,sup6()eq f(1,2)eq o(OA,sup6()eq f(2,3)eq o(AN,sup6()eq f(1,2)eq o(OA,sup6()eq f(2,3)(eq o(ON,sup6()eq o(OA,sup6()eq f(1,2)eq o(OA,sup6()eq f(2,3)eq blcrc(avs4alc
14、o1(f(1,2)o(OB,sup6()o(OC,sup6()o(OA,sup6()eq f(1,6)eq o(OA,sup6()eq f(1,3)eq o(OB,sup6()eq f(1,3)eq o(OC,sup6().eq o(OG,sup6()eq o(OM,sup6()eq o(MG,sup6()eq f(1,2)eq o(OA,sup6()eq f(1,6)eq o(OA,sup6()eq f(1,3)eq o(OB,sup6()eq f(1,3)eq o(OC,sup6()eq f(1,3)eq o(OA,sup6()eq f(1,3)eq o(OB,sup6()eq f(1,3
15、)eq o(OC,sup6().例2已知空間四邊形OABC,其對(duì)角線為OB,AC,M,N分別是OA,BC的中點(diǎn),點(diǎn)G在線段MN上,且eq o(MG,sup6()2eq o(GN,sup6(),現(xiàn)用基底eq o(OA,sup6(),eq o(OB,sup6(),eq o(OC,sup6()表示向量eq o(OG,sup6(),有eq o(OG,sup6()xeq o(OA,sup6()yeq o(OB,sup6()zeq o(OC,sup6(),則x,y,z的值分別為_(kāi)答案eq f(1,6),eq f(1,3),eq f(1,3)解析如圖,因?yàn)閑q o(OG,sup6()eq o(OM,sup6
16、()eq o(MG,sup6()eq f(1,2)eq o(OA,sup6()eq f(2,3)eq o(MN,sup6()eq f(1,2)eq o(OA,sup6()eq f(2,3)(eq o(ON,sup6()eq o(OM,sup6()eq f(1,2)eq o(OA,sup6()eq f(2,3)eq blc(rc)(avs4alco1(f(1,2)o(OB,sup6()f(1,2)o(OC,sup6()f(1,2)o(OA,sup6()eq f(1,6)eq o(OA,sup6()eq f(1,3)eq o(OB,sup6()eq f(1,3)eq o(OC,sup6(),所以x
17、eq f(1,6),yeq f(1,3),zeq f(1,3).1.在正方體ABCDA1B1C1D1中,點(diǎn)P是C1D1的中點(diǎn),且eq o(AP,sup6()eq o(AD,sup6()xeq o(AB,sup6()yeq o(AA1,sup6(),則實(shí)數(shù)xy的值為()Aeq f(3,2)Beq f(1,2)Ceq f(1,2)Deq f(3,2)答案D解析eq o(AP,sup6()eq o(AD,sup6()eq o(DD1,sup6()eq o(D1P,sup6()eq o(AD,sup6()eq o(AA1,sup6()eq f(1,2)eq o(AB,sup6()eq o(AD,sup
18、6()xeq o(AB,sup6()yeq o(AA1,sup6(),故xeq f(1,2),y1,所以xyeq f(3,2).2在正方體ABCDA1B1C1D1中,點(diǎn)M,N分別是面對(duì)角線A1B與B1D1的中點(diǎn),若eq o(DA,sup6()a,eq o(DC,sup6()b,eq o(DD1,sup6()c,則eq o(MN,sup6()等于()A.eq f(1,2)(cba)Beq f(1,2)(abc)C.eq f(1,2)(ac)Deq f(1,2)(ca)答案D解析eq o(MN,sup6()eq o(MA1,sup6()eq o(A1N,sup6()eq f(1,2)eq o(BA
19、1,sup6()eq f(1,2)eq o(A1C1,sup6()eq f(1,2)(eq o(BA,sup6()eq o(AA1,sup6()eq f(1,2)(eq o(A1B1,sup6()eq o(B1C1,sup6()eq f(1,2)(bc)eq f(1,2)(ba)eq f(1,2)(ca)用已知向量表示某一向量的三個(gè)關(guān)鍵點(diǎn)(1)用已知向量來(lái)表示某一向量,一定要結(jié)合圖形,以圖形為指導(dǎo)是解題的關(guān)鍵(2)要正確理解向量加法、減法與數(shù)乘運(yùn)算的幾何意義,如首尾相接的若干向量之和,等于由起始向量的始點(diǎn)指向末尾向量的終點(diǎn)的向量(3)在立體幾何中空間向量的三角形法則、平行四邊形法則仍然成立考點(diǎn)
20、共線向量定理、共面向量定理及應(yīng)用例3已知空間四點(diǎn)A(0,3,5),B(2,3,1),C(4,1,5),D(x,5,9)共面,則x_.答案6解析A(0,3,5),B(2,3,1),C(4,1,5),D(x,5,9),eq o(AB,sup6()(2,0,4),eq o(AC,sup6()(4,2,0),eq o(AD,sup6()(x,2,4),A,B,C,D四點(diǎn)共面,存在實(shí)數(shù),使得eq o(AD,sup6()eq o(AB,sup6()eq o(AC,sup6(),(x,2,4)(2,0,4)(4,2,0),eq blcrc (avs4alco1(x24,,22,,44,)解得x6.例4如圖,
21、已知M,N分別為四面體ABCD的面BCD與面ACD的重心,G為AM上一點(diǎn),且GMGA13.求證:B,G,N三點(diǎn)共線證明設(shè)eq o(AB,sup6()a,eq o(AC,sup6()b,eq o(AD,sup6()c,則eq o(BG,sup6()eq o(BA,sup6()eq o(AG,sup6()eq o(BA,sup6()eq f(3,4)eq o(AM,sup6()aeq f(1,4)(abc)eq f(3,4)aeq f(1,4)beq f(1,4)c,eq o(BN,sup6()eq o(BA,sup6()eq o(AN,sup6()eq o(BA,sup6()eq f(1,3)(
22、eq o(AC,sup6()eq o(AD,sup6()aeq f(1,3)beq f(1,3)ceq f(4,3)eq o(BG,sup6().所以eq o(BN,sup6()eq o(BG,sup6(),又eq o(BN,sup6()與eq o(BG,sup6()有公共點(diǎn)B,所以B,G,N三點(diǎn)共線例5已知A,B,C三點(diǎn)不共線,對(duì)平面ABC外的任一點(diǎn)O,若點(diǎn)M滿足eq o(OM,sup6()eq f(1,3)(eq o(OA,sup6()eq o(OB,sup6()eq o(OC,sup6()(1)判斷eq o(MA,sup6(),eq o(MB,sup6(),eq o(MC,sup6()三
23、個(gè)向量是否共面;(2)判斷點(diǎn)M是否在平面ABC內(nèi)解(1)由題意知eq o(OA,sup6()eq o(OB,sup6()eq o(OC,sup6()3eq o(OM,sup6(),eq o(OA,sup6()eq o(OM,sup6()(eq o(OM,sup6()eq o(OB,sup6()(eq o(OM,sup6()eq o(OC,sup6(),即eq o(MA,sup6()eq o(BM,sup6()eq o(CM,sup6()eq o(MB,sup6()eq o(MC,sup6(),eq o(MA,sup6(),eq o(MB,sup6(),eq o(MC,sup6()共面(2)由(
24、1)知eq o(MA,sup6(),eq o(MB,sup6(),eq o(MC,sup6()共面且過(guò)同一點(diǎn)M,M,A,B,C四點(diǎn)共面從而點(diǎn)M在平面ABC內(nèi)3.若A(1,2,3),B(2,1,4),C(m,n,1)三點(diǎn)共線,則mn_.答案3解析eq o(AB,sup6()(3,1,1),eq o(AC,sup6()(m1,n2,2),且A,B,C三點(diǎn)共線,存在實(shí)數(shù),使得eq o(AC,sup6()eq o(AB,sup6(),即(m1,n2,2)(3,1,1)(3,),eq blcrc (avs4alco1(m13,,n2,,2,)解得eq blcrc (avs4alco1(2,,m7,,n4
25、.)mn3.4已知a(2,1,2),b(1,3,3),c(13,6,),若向量a,b,c共面,則_.答案3解析向量a,b,c共面,存在實(shí)數(shù)m,n,使得cmanb,eq blcrc (avs4alco1(132mn,,6m3n,,2m3n,)解得eq blcrc (avs4alco1(m9,,n5,,3.)5. 如圖所示,已知斜三棱柱ABCA1B1C1,點(diǎn)M,N分別在AC1和BC上,且滿足eq o(AM,sup6()keq o(AC1,sup6(),eq o(BN,sup6()keq o(BC,sup6()(0k1)判斷向量eq o(MN,sup6()是否與向量eq o(AB,sup6(),eq
26、 o(AA1,sup6()共面解因?yàn)閑q o(AM,sup6()keq o(AC1,sup6(),eq o(BN,sup6()keq o(BC,sup6(),所以eq o(MN,sup6()eq o(MA,sup6()eq o(AB,sup6()eq o(BN,sup6()keq o(C1A,sup6()eq o(AB,sup6()keq o(BC,sup6()k(eq o(C1A,sup6()eq o(BC,sup6()eq o(AB,sup6()k(eq o(C1A,sup6()eq o(B1C1,sup6()eq o(AB,sup6()keq o(B1A,sup6()eq o(AB,su
27、p6()eq o(AB,sup6()keq o(AB1,sup6()eq o(AB,sup6()k(eq o(AA1,sup6()eq o(AB,sup6()(1k)eq o(AB,sup6()keq o(AA1,sup6(),所以由共面向量定理知向量eq o(MN,sup6()與向量eq o(AB,sup6(),eq o(AA1,sup6()共面三點(diǎn)(P,A,B)共線空間四點(diǎn)(M,P,A,B)共面eq o(PA,sup6()eq o(PB,sup6()且同過(guò)點(diǎn)Peq o(MP,sup6()xeq o(MA,sup6()yeq o(MB,sup6()對(duì)空間任一點(diǎn)O,eq o(OP,sup6()
28、eq o(OA,sup6()teq o(AB,sup6()對(duì)空間任一點(diǎn)O,eq o(OP,sup6()eq o(OM,sup6()xeq o(MA,sup6()yeq o(MB,sup6()對(duì)空間任一點(diǎn)O,eq o(OP,sup6()xeq o(OA,sup6()(1x)eq o(OB,sup6()對(duì)空間任一點(diǎn)O,eq o(OP,sup6()xeq o(OM,sup6()yeq o(OA,sup6()(1xy)eq o(OB,sup6()考點(diǎn)空間向量數(shù)量積及其應(yīng)用例6如圖所示,已知空間四邊形ABCD的每條邊和對(duì)角線長(zhǎng)都等于1,點(diǎn)E,F(xiàn),G分別是AB,AD,CD的中點(diǎn),計(jì)算:(1)eq o(EF
29、,sup6()eq o(BA,sup6();(2)eq o(EG,sup6()eq o(BD,sup6().解設(shè)eq o(AB,sup6()a,eq o(AC,sup6()b,eq o(AD,sup6()c.則|a|b|c|1,a,bb,cc,a60.(1)eq o(EF,sup6()eq f(1,2)eq o(BD,sup6()eq f(1,2)ceq f(1,2)a,eq o(BA,sup6()a,eq o(EF,sup6()eq o(BA,sup6()eq blc(rc)(avs4alco1(f(1,2)cf(1,2)a)(a)eq f(1,2)a2eq f(1,2)aceq f(1,4
30、).(2)eq o(EG,sup6()eq o(BD,sup6()(eq o(EA,sup6()eq o(AD,sup6()eq o(DG,sup6()(eq o(AD,sup6()eq o(AB,sup6()eq blc(rc)(avs4alco1(f(1,2)o(AB,sup6()o(AD,sup6()o(AG,sup6()o(AD,sup6()(eq o(AD,sup6()eq o(AB,sup6()eq blc(rc)(avs4alco1(f(1,2)o(AB,sup6()f(1,2)o(AC,sup6()f(1,2)o(AD,sup6()(eq o(AD,sup6()eq o(AB,
31、sup6()eq blc(rc)(avs4alco1(f(1,2)af(1,2)bf(1,2)c)(ca)eq f(1,2).例7如圖,正四面體ABCD(所有棱長(zhǎng)均相等)的棱長(zhǎng)為1,E,F(xiàn),G,H分別是正四面體ABCD中各棱的中點(diǎn),設(shè)eq o(AB,sup6()a,eq o(AC,sup6()b,eq o(AD,sup6()c,用向量法解決下列問(wèn)題:(1)求eq o(EF,sup6()的模;(2)求eq o(EF,sup6()與eq o(GH,sup6()的夾角的大小解(1)因?yàn)檎拿骟wABCD的棱長(zhǎng)為1,E,F(xiàn),G,H分別是正四面體ABCD中各棱的中點(diǎn),eq o(AB,sup6()a,eq
32、o(AC,sup6()b,eq o(AD,sup6()c,所以eq o(BE,sup6()eq f(1,2)eq o(BC,sup6()eq f(1,2)(eq o(AC,sup6()eq o(AB,sup6()eq f(1,2)(ba),eq o(AF,sup6()eq f(1,2)eq o(AD,sup6()eq f(1,2)c.所以eq o(EF,sup6()eq o(EB,sup6()eq o(BA,sup6()eq o(AF,sup6()eq f(1,2)(ba)aeq f(1,2)ceq f(1,2)(cab),所以|eq o(EF,sup6()|2eq f(1,4)(cab)2e
33、q f(1,4)(c2a2b22ac2ab2bc)eq f(1,4)(111211cos60211cos60211cos60)eq f(1,2),故|eq o(EF,sup6()|eq f(r(2),2).(2)在正四面體ABCD中,eq o(EF,sup6()eq f(1,2)(cab),|eq o(EF,sup6()|eq f(r(2),2).同理,eq o(GH,sup6()eq f(1,2)(bca),|eq o(GH,sup6()|eq f(r(2),2).所以coseq o(EF,sup6(),eq o(GH,sup6()eq f(o(EF,sup6()o(GH,sup6(),|o
34、(EF,sup6()|o(GH,sup6()|)eq f(f(1,2)cabf(1,2)bca,f(r(2),2)f(r(2),2)eq f(1,2)(ca)2b2eq f(1,2)(c2a22cab2)eq f(1,2)(11211cos601)0,所以eq o(EF,sup6()與eq o(GH,sup6()的夾角為90.6. 已知空間四邊形ABCD的每條邊和對(duì)角線的長(zhǎng)都等于a,點(diǎn)E,F(xiàn)分別是BC,AD的中點(diǎn),則eq o(AE,sup6()eq o(AF,sup6()()Aa2Beq f(1,2)a2Ceq f(1,4)a2Deq f(r(3),4)a2答案C解析設(shè)eq o(AB,sup6
35、()a,eq o(AC,sup6()b,eq o(AD,sup6()c,則|a|b|c|a,且a,b,c兩兩夾角為60.又eq o(AE,sup6()eq f(1,2)(ab),eq o(AF,sup6()eq f(1,2)c,故eq o(AE,sup6()eq o(AF,sup6()eq f(1,2)(ab)eq f(1,2)ceq f(1,4)(acbc)eq f(1,4)(a2cos60a2cos60)eq f(1,4)a2.7已知向量a(1,2,3),b(2,4,6),|c|eq r(14),若(ab)c7,則a與c的夾角為()A30B60C120D150答案C解析由于ab(1,2,3
36、)a,故(ab)cac7,即ac7.又|a|eq r(122232)eq r(14),所以cosa,ceq f(ac,|a|c|)eq f(1,2),所以a,c120.8. 如圖,在大小為45的二面角AEFD中,四邊形ABFE,CDEF都是邊長(zhǎng)為1的正方形,則B,D兩點(diǎn)間的距離是()A.eq r(3)Beq r(2)C1Deq r(3r(2)答案D解析因?yàn)閑q o(BD,sup6()eq o(BF,sup6()eq o(FE,sup6()eq o(ED,sup6(),所以|eq o(BD,sup6()|2|eq o(BF,sup6()|2|eq o(FE,sup6()|2|eq o(ED,su
37、p6()|22eq o(BF,sup6()eq o(FE,sup6()2eq o(FE,sup6()eq o(ED,sup6()2eq o(BF,sup6()eq o(ED,sup6()111eq r(2)3eq r(2).故|eq o(BD,sup6()| eq r(3r(2).1空間向量數(shù)量積的計(jì)算方法(1)定義法:設(shè)向量a,b的夾角為,則ab|a|b|cos.(2)坐標(biāo)法:設(shè)a(x1,y1,z1),b(x2,y2,z2),則abx1x2y1y2z1z2.2運(yùn)用公式|a|2aa,可使線段長(zhǎng)度(即兩點(diǎn)間距離)的計(jì)算問(wèn)題轉(zhuǎn)化為向量數(shù)量積的計(jì)算問(wèn)題3設(shè)向量a,b所成的角為,則coseq f(ab
38、,|a|b|),進(jìn)而可求兩異面直線所成的角課時(shí)作業(yè)一、單項(xiàng)選擇題1. 如圖,在空間直角坐標(biāo)系中,正方體ABCDA1B1C1D1的棱長(zhǎng)為1,B1Eeq f(1,4)A1B1,則eq o(BE,sup6()()A.eq blc(rc)(avs4alco1(0,f(1,4),1)Beq blc(rc)(avs4alco1(f(1,4),0,1)C.eq blc(rc)(avs4alco1(0,f(1,4),1)Deq blc(rc)(avs4alco1(f(1,4),0,1)答案C解析正方體ABCDA1B1C1D1的棱長(zhǎng)為1,B1Eeq f(1,4)A1B1,B(1,1,0),Eeq blc(rc)
39、(avs4alco1(1,f(3,4),1),eq o(BE,sup6()eq blc(rc)(avs4alco1(1,f(3,4),1)(1,1,0)eq blc(rc)(avs4alco1(0,f(1,4),1).2已知a(2,3,1),b(2,0,4),c(4,6,2),則下列結(jié)論正確的是()Aac,bcBab,acCac,abD以上都不對(duì)答案C解析a(2,3,1),b(2,0,4),c(4,6,2),ab4040,ab.eq f(4,2)eq f(6,3)eq f(2,1),ac.故選C.3在長(zhǎng)方體ABCDA1B1C1D1中,eq o(BA,sup6()eq o(BC,sup6()eq
40、 o(DD1,sup6()()A.eq o(D1B1,sup6()Beq o(D1B,sup6()Ceq o(DB1,sup6()Deq o(BD1,sup6()答案D解析如圖所示,在長(zhǎng)方體ABCDA1B1C1D1中,eq o(BA,sup6()eq o(BC,sup6()eq o(DD1,sup6()(eq o(BA,sup6()eq o(BC,sup6()eq o(DD1,sup6()eq o(BD,sup6()eq o(DD1,sup6()eq o(BD1,sup6().故選D.4在空間四邊形ABCD中,eq o(AB,sup6()eq o(CD,sup6()eq o(AC,sup6()
41、eq o(DB,sup6()eq o(AD,sup6()eq o(BC,sup6()等于()A1B0C1D不確定答案B解析如圖,令eq o(AB,sup6()a,eq o(AC,sup6()b,eq o(AD,sup6()c,則eq o(AB,sup6()eq o(CD,sup6()eq o(AC,sup6()eq o(DB,sup6()eq o(AD,sup6()eq o(BC,sup6()a(cb)b(ac)c(ba)acabbabccbca0.5. 如圖,在平行六面體ABCDABCD中,AC與BD的交點(diǎn)為O,點(diǎn)M在BC上,且BM2MC,則下列向量中與eq o(OM,sup6()相等的是(
42、)Aeq f(1,2)eq o(AB,sup6()eq f(7,6)eq o(AD,sup6()eq f(2,3)eq o(AA,sup6()Beq f(1,2)eq o(AB,sup6()eq f(5,6)eq o(AD,sup6()eq f(1,3)eq o(AA,sup6()C.eq f(1,2)eq o(AB,sup6()eq f(1,6)eq o(AD,sup6()eq f(2,3)eq o(AA,sup6()D.eq f(1,2)eq o(AB,sup6()eq f(1,6)eq o(AD,sup6()eq f(1,3)eq o(AA,sup6()答案C解析因?yàn)锽M2MC,所以eq
43、 o(BM,sup6()eq f(2,3)eq o(BC,sup6(),在平行六面體ABCDABCD中,eq o(OM,sup6()eq o(OB,sup6()eq o(BM,sup6()eq o(OB,sup6()eq f(2,3)eq o(BC,sup6()eq f(1,2)eq o(DB,sup6()eq f(2,3)(eq o(AD,sup6()eq o(AA,sup6()eq f(1,2)(eq o(AB,sup6()eq o(AD,sup6()eq f(2,3)(eq o(AD,sup6()eq o(AA,sup6()eq f(1,2)eq o(AB,sup6()eq f(1,6)
44、eq o(AD,sup6()eq f(2,3)eq o(AA,sup6().故選C.6. 如圖,在三棱柱ABCA1B1C1中,BC1與B1C相交于點(diǎn)O,A1ABA1AC60,BAC90,A1A3,ABAC2,則線段AO的長(zhǎng)度為()A.eq f(r(29),2)Beq r(29)Ceq f(r(23),2)Deq r(23)答案A解析由題意可知,eq o(AO,sup6()eq f(1,2)(eq o(AB,sup6()eq o(AC1,sup6()eq f(1,2)(eq o(AB,sup6()eq o(AC,sup6()eq o(AA1,sup6(),且A1ABA1AC60,BAC90,A1
45、A3,ABAC2,則eq o(AO,sup6()2eq f(1,4)(eq o(AB,sup6()2eq o(AC,sup6()2eq o(AA1,sup6()22eq o(AB,sup6()eq o(AC,sup6()2eq o(AB,sup6()eq o(AA1,sup6()2eq o(AC,sup6()eq o(AA1,sup6()eq f(1,4)eq blc(rc)(avs4alco1(4490223f(1,2)223f(1,2)eq f(29,4),|eq o(AO,sup6()|eq f(r(29),2).故選A.7在正方體ABCDA1B1C1D1中,若點(diǎn)G是BA1D的重心,且e
46、q o(AG,sup6()xeq o(AD,sup6()yeq o(AB,sup6()zeq o(CC1,sup6(),則xyz的值為()A3B1C1D3答案B解析如圖所示,連接AC,BD交于點(diǎn)O,連接AG,A1O,則2eq o(AO,sup6()eq o(AB,sup6()eq o(AD,sup6(),eq o(OG,sup6()eq f(1,3)eq o(OA1,sup6(),eq o(OA1,sup6()eq o(OA,sup6()eq o(AA1,sup6(),eq o(AG,sup6()eq o(AO,sup6()eq o(OG,sup6()eq o(AO,sup6()eq f(1,
47、3)eq o(OA1,sup6()eq o(AO,sup6()eq f(1,3)(eq o(OA,sup6()eq o(AA1,sup6()eq f(2,3)eq o(AO,sup6()eq f(1,3)eq o(AA1,sup6()eq f(1,3)eq o(AB,sup6()eq f(1,3)eq o(AD,sup6()eq f(1,3)eq o(CC1,sup6(),eq o(AG,sup6()xeq o(AD,sup6()yeq o(AB,sup6()zeq o(CC1,sup6(),xyzeq f(1,3)eq f(1,3)eq f(1,3)1.8已知空間任意一點(diǎn)O和不共線的三點(diǎn)A,
48、B,C,若eq o(OP,sup6()xeq o(OA,sup6()yeq o(OB,sup6()zeq o(OC,sup6()(x,y,zR),則“x2,y3,z2”是“P,A,B,C四點(diǎn)共面”的()A必要不充分條件B充分不必要條件C充要條件D既不充分也不必要條件答案B解析當(dāng)x2,y3,z2時(shí),即eq o(OP,sup6()2eq o(OA,sup6()3eq o(OB,sup6()2eq o(OC,sup6().則eq o(AP,sup6()eq o(AO,sup6()2eq o(OA,sup6()3(eq o(AB,sup6()eq o(AO,sup6()2(eq o(AC,sup6()
49、eq o(AO,sup6(),即eq o(AP,sup6()3eq o(AB,sup6()2eq o(AC,sup6(),根據(jù)共面向量定理知,P,A,B,C四點(diǎn)共面;反之,當(dāng)P,A,B,C四點(diǎn)共面時(shí),根據(jù)共面向量定理,設(shè)eq o(AP,sup6()meq o(AB,sup6()neq o(AC,sup6()(m,nR),即eq o(OP,sup6()eq o(OA,sup6()m(eq o(OB,sup6()eq o(OA,sup6()n(eq o(OC,sup6()eq o(OA,sup6(),即eq o(OP,sup6()(1mn)eq o(OA,sup6()meq o(OB,sup6()
50、neq o(OC,sup6(),即x1mn,ym,zn,這組數(shù)顯然不止2,3,2.故“x2,y3,z2”是“P,A,B,C四點(diǎn)共面”的充分不必要條件二、多項(xiàng)選擇題9已知空間中三點(diǎn)A(0,1,0),B(2,2,0),C(1,3,1),則()A.eq o(AB,sup6()與eq o(AC,sup6()是共線向量B與eq o(AB,sup6()共線的單位向量是(1,1,0)C.eq o(AB,sup6()與eq o(BC,sup6()夾角的余弦值是eq f(r(55),11)D平面ABC的一個(gè)法向量是(1,2,5)答案CD解析由題意,對(duì)于A,eq o(AB,sup6()(2,1,0),eq o(A
51、C,sup6()(1,2,1),所以eq o(AB,sup6()與eq o(AC,sup6()不是共線向量,所以A不正確;對(duì)于B,因?yàn)閑q o(AB,sup6()(2,1,0),所以與eq o(AB,sup6()共線的單位向量為eq blc(rc)(avs4alco1(f(2r(5),5),f(r(5),5),0)或eq blc(rc)(avs4alco1(f(2r(5),5),f(r(5),5),0),所以B不正確;對(duì)于C,向量eq o(AB,sup6()(2,1,0),eq o(BC,sup6()(3,1,1),所以coseq o(AB,sup6(),eq o(BC,sup6()eq f(
52、o(AB,sup6()o(BC,sup6(),|o(AB,sup6()|o(BC,sup6()|)eq f(r(55),11),所以C正確;對(duì)于D,設(shè)平面ABC的法向量是n(x,y,z),因?yàn)閑q o(AB,sup6()(2,1,0),eq o(AC,sup6()(1,2,1),所以eq blcrc (avs4alco1(no(AB,sup6()0,,no(AC,sup6()0,)即eq blcrc (avs4alco1(2xy0,,x2yz0,)令x1,所以平面ABC的一個(gè)法向量為n(1,2,5),所以D正確故選CD.10已知空間三點(diǎn)A(1,0,3),B(1,1,4),C(2,1,3)若eq
53、 o(AP,sup6()eq o(BC,sup6(),且|eq o(AP,sup6()|eq r(14),則點(diǎn)P的坐標(biāo)為()A(4,2,2)B(2,2,4)C(4,2,2)D(2,2,4)答案AB解析eq o(AP,sup6()eq o(BC,sup6(),可設(shè)eq o(AP,sup6()eq o(BC,sup6().易知eq o(BC,sup6()(3,2,1),則eq o(AP,sup6()(3,2,)又|eq o(AP,sup6()|eq r(14),eq r(32222)eq r(14),解得1,eq o(AP,sup6()(3,2,1)或eq o(AP,sup6()(3,2,1)設(shè)點(diǎn)
54、P的坐標(biāo)為(x,y,z),則eq o(AP,sup6()(x1,y,z3),eq blcrc (avs4alco1(x13,,y2,,z31)或eq blcrc (avs4alco1(x13,,y2,,z31,)解得eq blcrc (avs4alco1(x4,,y2,,z2)或eq blcrc (avs4alco1(x2,,y2,,z4.)故點(diǎn)P的坐標(biāo)為(4,2,2)或(2,2,4)故選AB.三、填空題11已知向量a(5,3,1),beq blc(rc)(avs4alco1(2,t,f(2,5),若a與b的夾角為鈍角,則實(shí)數(shù)t的取值范圍為_(kāi)答案eq blc(rc)(avs4alco1(,f(
55、6,5)eq blc(rc)(avs4alco1(f(6,5),f(52,15)解析由已知得ab5(2)3t1eq blc(rc)(avs4alco1(f(2,5)3teq f(52,5).因?yàn)閍與b的夾角為鈍角,所以ab0,即3teq f(52,5)0,所以teq f(52,15).若a與b的夾角為180,則存在0,使ab(0),即(5,3,1)eq blc(rc)(avs4alco1(2,t,f(2,5),所以eq blcrc (avs4alco1(52,,3t,,1f(2,5),)所以teq f(6,5),故實(shí)數(shù)t的取值范圍是eq blc(rc)(avs4alco1(,f(6,5)eq
56、blc(rc)(avs4alco1(f(6,5),f(52,15).12已知向量a(2,1,3),b(1,4,2),c(7,5,),若ac,則_,若a,b,c共面,則_.答案3eq f(65,7)解析因?yàn)閍c,所以ac0,即27(1)530,解得3,因?yàn)閍(2,1,3),b(1,4,2),所以a,b不共線,因?yàn)閍,b,c共面,所以存在一對(duì)實(shí)數(shù)m,n,使cmanb,所以(7,5,)m(2,1,3)n(1,4,2)(2mn,m4n,3m2n),所以eq blcrc (avs4alco1(2mn7,,m4n5,,3m2n,)解得eq blcrc (avs4alco1(mf(33,7),,nf(17,
57、7),,f(65,7).)13. 如圖,60的二面角的棱上有A,B兩點(diǎn),直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB.已知AB4,AC6,BD8,則CD的長(zhǎng)為_(kāi)答案2eq r(17)解析由條件,知eq o(CA,sup6()eq o(AB,sup6()0,eq o(AB,sup6()eq o(BD,sup6()0,eq o(CD,sup6()eq o(CA,sup6()eq o(AB,sup6()eq o(BD,sup6().所以|eq o(CD,sup6()|2|eq o(CA,sup6()|2|eq o(AB,sup6()|2|eq o(BD,sup6()|22eq o(C
58、A,sup6()eq o(AB,sup6()2eq o(AB,sup6()eq o(BD,sup6()2eq o(CA,sup6()eq o(BD,sup6()624282268cos12068,所以CD2eq r(17).14. 如圖,在空間四邊形OABC中,eq o(OA,sup6()a,eq o(OB,sup6()b,eq o(OC,sup6()c,點(diǎn)M在OA邊上,且eq o(OM,sup6()2eq o(MA,sup6(),N為BC的中點(diǎn),則eq o(MN,sup6()_(用a,b,c表示)答案eq f(2,3)aeq f(1,2)beq f(1,2)c解析eq o(OA,sup6()a,eq o(OB,sup6()b,eq o(OC,sup6()c,eq o(OM,sup6()2eq o(MA,sup6(),N為BC的中點(diǎn),eq o(MN,sup6()eq o(MO,sup6()eq o(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑木材質(zhì)量評(píng)估行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 蒸汽拖把蒸汽清潔器械項(xiàng)目運(yùn)營(yíng)指導(dǎo)方案
- 答辯魔法書(shū):輕松搞定-高校學(xué)術(shù)答辯全方位指南
- 醫(yī)療分析儀器產(chǎn)品供應(yīng)鏈分析
- 狗用驅(qū)蟲(chóng)劑商業(yè)機(jī)會(huì)挖掘與戰(zhàn)略布局策略研究報(bào)告
- 廢物再生行業(yè)經(jīng)營(yíng)分析報(bào)告
- 地質(zhì)勘探行業(yè)經(jīng)營(yíng)分析報(bào)告
- 矯形襪項(xiàng)目營(yíng)銷(xiāo)計(jì)劃書(shū)
- 醫(yī)療設(shè)備包裝行業(yè)營(yíng)銷(xiāo)策略方案
- 冷鏈乳制品行業(yè)經(jīng)營(yíng)分析報(bào)告
- 監(jiān)理單位工程質(zhì)量責(zé)任登記表
- 集團(tuán)型企業(yè)印控管理平臺(tái)建設(shè)方案
- 樂(lè)高零件分類(lèi)圖鑒
- 靜脈采血PPTPPT幻燈片課件
- 肺腫瘤熱消融并發(fā)癥的預(yù)防及處理[兼容模式]
- 倒閘操作票范本
- 漢字筆畫(huà)名稱(chēng)表(拼音版)
- 校車(chē)使用(許可)申請(qǐng)表
- 月度質(zhì)量例會(huì)PPT模板
- 故鄉(xiāng)雨正普五線譜(正譜)
- YD_T 3956-2021 電信網(wǎng)和互聯(lián)網(wǎng)數(shù)據(jù)安全評(píng)估規(guī)范_(高清版)
評(píng)論
0/150
提交評(píng)論