MIT(麻省理工)信號與系統(tǒng)講義lecture5課件_第1頁
MIT(麻省理工)信號與系統(tǒng)講義lecture5課件_第2頁
MIT(麻省理工)信號與系統(tǒng)講義lecture5課件_第3頁
MIT(麻省理工)信號與系統(tǒng)講義lecture5課件_第4頁
MIT(麻省理工)信號與系統(tǒng)講義lecture5課件_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、Signals and SystemsFall 2003 Lecture #518 September 20031. Complex Exponentials as Eigenfunctions of LTI Systems2. Fourier Series representation of CT periodic signals3. How do we calculate the Fourier coefficients?4. Convergence and Gibbs Phenomenon第1頁,共16頁。Portrait of Jean Baptiste Joseph FourierI

2、mage removed due to copyright considerations.Signals & Systems, 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 1997, p. 179. 第2頁,共16頁。Desirable Characteristics of a Set of “Basic” Signalsa. We can represent large and useful classes of signals using these building blocksb. The response of LTI syste

3、ms to these basic signals is particularly simple, useful, and insightful Previous focus: Unit samples and impulsesFocus now: Eigenfunctions of all LTI systems第3頁,共16頁。The eigenfunctions k(t)and their properties(Focus on CT systems now, but results apply to DT systems as well.)eigenvalue eigenfunctio

4、n Eigenfunction in same function out with a “gain”From the superposition property of LTI systems:Now the task of finding response of LTI systems is to determine k. 第4頁,共16頁。Complex Exponentials as the Eigenfunctions of any LTI Systemseigenvalue eigenfunction eigenvalue eigenfunction 第5頁,共16頁。DT:第6頁,

5、共16頁。What kinds of signals can we represent as “sums” of complex exponentials?For Now: Focus on restricted sets of complex exponentials CT:DT:s = jw purely imaginaly,i.e., signals of the form ejwtZ = ejwi.e., signals of the form ejwtMagnitude 1CT & DT Fourier Series and TransformsPeriodic Signals第7頁

6、,共16頁。Fourier Series Representation of CT Periodic Signalssmallest such T is the fundamental period is the fundamental frequencyPeriodic with period T-periodic with period T-ak are the Fourier (series) coefficients-k= 0 DC -k= ? first harmonic-k= ? 2second harmonic第8頁,共16頁。Question #1: How do we fin

7、d the Fourier coefficients?First, for simple periodic signals consisting of a few sinusoidal terms 第9頁,共16頁。 For real periodic signals, there are two other commonly used forms for CT Fourier series: or Because of the eigenfunction property of e jt , we will usually use the complex exponential form i

8、n 6.003. - A consequence of this is that we need to include terms for both positive and negative frequencies:Rememberand sin第10頁,共16頁。Now, the complete answer to Question #1multiply byIntegrate over one periodmultiply byIntegrate over one perioddenotes integral over any interval of lengthHereNext, n

9、ote thatOrthogonality第11頁,共16頁。CT Fourier Series Pair(Synthesis equation)(Analysis equation)第12頁,共16頁。Ex:Periodic Square Wave DC component is just the average第13頁,共16頁。Convergence of CT Fourier Series How can the Fourier series for the square wave possibly make sense? The key is: What do we mean by

10、One useful notion for engineers: there is no energy in the difference(just need x(t) to have finite energy per period)第14頁,共16頁。Under a different, but reasonable set of conditions (the Dirichlet conditions)Condition 1. x(t) is absolutely integrable over one period, i. e.AndCondition 2. In a finite t

11、ime interval, x(t) has a finite number of maxima and minima. Ex. An example that violates Condition 2.AndCondition 3. In a finite time interval, x(t) has only a finite number of discontinuities. Ex. An example that violates Condition 3.第15頁,共16頁。 Dirichlet conditions are met for the signals we will encounter in the real world. Then - The Fourier series = x(t) at points where x(t) is continuous - The Fourier series = “midpoint” at points of discontinuity Still, con

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論