版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Signals and SystemsFall 2003Lecture #29 September 20031) Some examples of systems2) System properties and examples a) Causality b) Linearity c) Time invariance1第1頁(yè),共21頁(yè)。SYSTEM EXAMPLESEx. #1 RLC circuit2第2頁(yè),共21頁(yè)。Ex. #2 Mechanical systemForce Balance:Observation: Very different physical systems may b
2、e modeled mathematically in very similar ways.-applied force-spring constant-damping constant-displacement form rest3第3頁(yè),共21頁(yè)。Ex. #3 Thermal systemCooling Fin in Steady StateTemperature t = distance along rody(t) = Fin temperature as function of positionx(t) = Surrounding temperature along the fin4第
3、4頁(yè),共21頁(yè)。Ex. #3 (Continued)ObservationsIndependent variable can be something other than time, such as space.Such systems may, more naturally, have boundary conditions, rather than “initial” conditions.5第5頁(yè),共21頁(yè)。Ex. #4 Financial systemFluctuations in the price of zero-coupon bondst = 0 Time of purchas
4、e at price y0t = T Time of maturity at value yty(t) = Values of bond at time tx(t)= Influence of external factors on fluctuations in bond priceObservation: Even if the independent variable is time, there are interesting and important systems which have boundary conditions. 6第6頁(yè),共21頁(yè)。Ex. #5A rudiment
5、ary “edge” detector This system detects changes in signal slope7第7頁(yè),共21頁(yè)。Observations1)A very rich class of systems (but by no means all systems of interest to us) are described by differential and difference equations.2)Such an equation, by itself, does not completely describe the input-output beha
6、vior of a system: we need auxiliary conditions (initial conditions, boundary conditions).3)In some cases the system of interest has time as the natural independent variable and is causal. However, that is not always the case. 4)Very different physical systems may have very similar mathematical descr
7、iptions.8第8頁(yè),共21頁(yè)。SYSTEMPROPERTIES(Causality, Linearity, Time-invariance, etc.)WHY?Important practical/physical implicationsThey provide us with insight and structure that we can exploit both to analyze and understand systems more deeply. 9第9頁(yè),共21頁(yè)。CAUSALITYA system is causal if the output does not
8、anticipate future values of the input, i.e., if the output at any time depends only on values of the input up to that time. All real-time physical systems are causal, because time only moves forward. Effect occurs after cause. (Imagine if you own a noncausal system whose output depends on tomorrows
9、stock price.)Causality does not apply to spatially varying signals. (We can move both left and right, up and down.)Causality does not apply to systems processing recorded signals, e.g. taped sports games vs. live broadcast.10第10頁(yè),共21頁(yè)。CAUSALITY (continued)Mathematically (in CT): A system x(t) y(t) i
10、s causal if when x1(t) y1(t) x2(t) y2(t) and x1(t) = x2(t) for all t to Then y1(t) = y2(t) for all t to11第11頁(yè),共21頁(yè)。CAUSAL OR NONCAUSALdepends ondepends on futuredepends on futuredepends oncausalnoncausalnoncausalcausal12第12頁(yè),共21頁(yè)。TIME-INVARIANCE (TI)Informally, a system is time-invariant (TI) if its
11、 behavior does not depend on what time it is. Mathematically (in DT): A system xn yn is TI if for any input xn and any time shift n0, If xn yn then xn -n0 yn -n0Similarly for a CT time-invariant system, If x(t) y(t) then x(t -to) y(t -to) .13第13頁(yè),共21頁(yè)。TIME-INVARIANT OR TIME-VARYING ?Time-varying (NO
12、T time-invariant)14第14頁(yè),共21頁(yè)。NOW WE CAN DEDUCE SOMETHING!Fact: If the input to a TI System is periodic, then the output is periodic with the same period. “Proof”: Suppose x(t + T) = x(t) and x(t) y(t) Then by TI x(t + T) y(t + T). So these must be the same output, i.e., y(t) = y(t + T). These are th
13、e same input!15第15頁(yè),共21頁(yè)。LINEAR AND NONLINEAR SYSTEMSMany systems are nonlinear. For example: many circuit elements (e.g., diodes), dynamics of aircraft, econometric models,However, in 6.003 we focus exclusively on linear systems.Why? Linear models represent accurate representations of behavior of m
14、any systems (e.g., linear resistors, capacitors, other examples given previously,) Can often linearize models to examine “small signal” perturbations around “operating points” Linear systems are analytically tractable, providing basis for important tools and considerable insight16第16頁(yè),共21頁(yè)。LINEARITY
15、A (CT) system is linear if it has the superposition property: If x1(t) y1(t) and x2(t) y2(t) then ax1(t) + bx2(t) ay1(t) + by2(t) yn = x2n Nonlinear, TI, Causal y(t) = x(2t) Linear, not TI, Noncausal Can you find systems with other combinations ? -e.g. Linear, TI, Noncausal Linear, not TI, Causal17第
16、17頁(yè),共21頁(yè)。PROPERTIES OF LINEAR SYSTEMSSuperpositionFor linear systems, zero input zero output Proof 0=0 xn0yn=018第18頁(yè),共21頁(yè)。Properties of Linear Systems (Continued)A linear system is causal if and only if it satisfies the condition of initial rest: “Proof”a) Suppose system is causal. Show that (*) holds. b) Suppose (*) holds. Show that the system is causal. 19第19頁(yè),共21頁(yè)。LINEAR TIME-INVARIANT (LTI) SYSTEMSFocus of most of this course - Practical importance (Eg. #1-3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 健康綠色環(huán)保演講稿
- 保修承諾書范文
- 乘務(wù)員工作總結(jié)
- 范文學(xué)期計(jì)劃模板匯編7篇
- DB12T 488-2013 居家養(yǎng)老社區(qū)服務(wù)規(guī)范
- DB12T 546-2014 南水北調(diào)工程施工現(xiàn)場(chǎng)安全生產(chǎn)管理規(guī)范
- 新學(xué)期學(xué)習(xí)計(jì)劃模板集錦4篇
- 新學(xué)期學(xué)習(xí)計(jì)劃資料集錦九篇
- 學(xué)校老干部工作總結(jié)
- 高等數(shù)學(xué)教程 上冊(cè) 第4版 習(xí)題及答案 P049 第2章 極限與連續(xù)
- 紅色消防安全知識(shí)宣傳培訓(xùn)課件PPT模板
- 果蔬機(jī)械冷藏課件2
- 拼音復(fù)習(xí)-拼音轉(zhuǎn)盤課件
- 項(xiàng)目進(jìn)度管理培訓(xùn)(-)課件
- 高考語文 如何讀懂詩(shī)歌 課件(32張PPT)
- 中壓交聯(lián)電纜電纜正、負(fù)和零序計(jì)算
- 3C戰(zhàn)略三角模型
- 高標(biāo)準(zhǔn)農(nóng)田建設(shè)示范工程質(zhì)量管理體系與措施
- 學(xué)生頂崗實(shí)習(xí)安全教育課件
- 公司組織架構(gòu)圖模板課件
- 遼寧省葫蘆島市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
評(píng)論
0/150
提交評(píng)論