版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、重慶簡誼佳教育咨詢有限公司校區(qū)一:渝北農(nóng)業(yè)園區(qū)清河尚居16-10(兩江中學(xué)下行500米) 電話:678-434-99校區(qū)二:渝北工業(yè)園區(qū)水木年華4棟3-3(回興輕軌站下車即到) 電話:675-888-08 校區(qū)三:渝北鴛鴦民心佳園33棟24-7(民心佳園小學(xué)旁) 電話學(xué)服務(wù)電話簡老師) PAGE 10第一部分 集合、映射、函數(shù)、導(dǎo)數(shù)及微積分集合映射概念元素、集合之間的關(guān)系運算:交、并、補數(shù)軸、Venn圖、函數(shù)圖象性質(zhì)確定性、互異性、無序性定義表示解析法列表法三要素圖象法定義域?qū)?yīng)關(guān)系值域性質(zhì)奇偶性周期性對稱性單調(diào)性定義域關(guān)于原點對稱,在x0處
2、有定義的奇函數(shù)f (0)01、函數(shù)在某個區(qū)間遞增(或減)與單調(diào)區(qū)間是某個區(qū)間的含義不同;2、證明單調(diào)性:作差(商)、導(dǎo)數(shù)法;3、復(fù)合函數(shù)的單調(diào)性最值二次函數(shù)、基本不等式、打鉤(耐克)函數(shù)、三角函數(shù)有界性、數(shù)形結(jié)合、導(dǎo)數(shù).冪函數(shù)對數(shù)函數(shù)三角函數(shù)基本初等函數(shù)抽象函數(shù)復(fù)合函數(shù)賦值法、典型的函數(shù)函數(shù)與方程二分法、圖象法、二次及三次方程根的分布零點函數(shù)的應(yīng)用建立函數(shù)模型使解析式有意義導(dǎo)數(shù)函數(shù)基本初等函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)的概念導(dǎo)數(shù)的運算法則導(dǎo)數(shù)的應(yīng)用表示方法換元法求解析式分段函數(shù)幾何意義、物理意義單調(diào)性導(dǎo)數(shù)的正負(fù)與單調(diào)性的關(guān)系生活中的優(yōu)化問題定積分與微積分定積分與圖形的計算注意應(yīng)用函數(shù)的單調(diào)性求值域周期為T的奇
3、函數(shù)f (T)f ( eq f(T,2)f (0)0復(fù)合函數(shù)的單調(diào)性:同增異減三次函數(shù)的性質(zhì)、圖象與應(yīng)用一次、二次函數(shù)、反比例函數(shù)指數(shù)函數(shù)圖象、性質(zhì)和應(yīng)用平移變換對稱變換翻折變換伸縮變換圖象及其變換最值極值第二部分 三角函數(shù)與平面向量角的概念任意角的三角函數(shù)的定義同角三角函數(shù)的關(guān)系三角函數(shù)弧度制弧長公式、扇形面積公式三角函數(shù)線同角三角函數(shù)的關(guān)系誘導(dǎo)公式和角、差角公式二倍角公式公式的變形、逆用、“1”的替換化簡、求值、證明(恒等變形)三角函數(shù)的 圖 象定義域奇偶性單調(diào)性周期性最值 對稱軸(正切函數(shù)除外)經(jīng)過函數(shù)圖象的最高(或低)點且垂直x軸的直線,對稱中心是正余弦函數(shù)圖象的零點,正切函數(shù)的對稱中
4、心為( eq f(k,2),0)(kZ).正弦函數(shù)ysin x=余弦函數(shù)ycos x正切函數(shù)ytan xyAsin(x)b圖象可由正弦曲線經(jīng)過平移、伸縮得到,但要注意先平移后伸縮與先伸縮后平移不同;圖象也可以用五點作圖法;用整體代換求單調(diào)區(qū)間(注意的符號);最小正周期T eq f(2,| |);對稱軸x eq f(2k1)2,2),對稱中心為( eq f(k,),b)(kZ).平面向量概念線性運算基本定理加、減、數(shù)乘幾何意義坐標(biāo)表示數(shù)量積幾何意義模共線與垂直共線(平行)垂直值域圖象eq o(a,sup4()eq o(b,sup4()eq o(b,sup4()eq o(a,sup4() x1y2
5、x2y1=0eq o(a,sup4()eq o(b,sup4()eq o(b,sup4()eq o(a,sup4()0 x1x2y1y2=0解三角形余弦定理面積正弦定理解的個數(shù)的討論實際應(yīng)用S eq f(1,2)ah eq f(1,2)absinC eq r(p(pa)(pb)(pc)(其中p eq f(abc,2))投影eq o(b,sup4()在eq o(a,sup4()方向上的投影為|eq o(b,sup4()|cos eq o(sup4(o(a,sup5()o(b,sup5(),sdo8(|o(a,sup5()|)設(shè)eq o(a,sup4()與eq o(b,sup4()夾角,則cos
6、eq o(sup4(o(a,sup5()o(b,sup5(),sdo8(|o(a,sup5()|o(b,sup5()|)對稱性|eq o(a,sup4()| eq r(x2x1)2(y2y1)2)夾角公式第三部分 數(shù)列與不等式概念數(shù)列表示等差數(shù)列與等比數(shù)列的類比解析法:anf (n)通項公式圖象法列表法遞推公式等差數(shù)列通項公式求和公式性質(zhì)判斷ana1(n1)dana1qn1anamaparanamapar前n項和Sn eq f(n(a1an),2)前n項積(an0)Tn eq r(a1an)n)常見遞推類型及方法逐差累加法逐商累積法構(gòu)造等比數(shù)列an eq f(q,p1)構(gòu)造等差數(shù)列an1anf
7、 (n) eq f(an + 1,an) f (n)an1panqpan1ananan1化為 eq f(an1,qn)= eq f(p,q) eq f(an,qn1)1轉(zhuǎn)為an + 1panqn等比數(shù)列an0,q0Sn eq blc(aal(na1,q1,f(a1(1qn),1q),q1)公式法:應(yīng)用等差、等比數(shù)列的前n項和公式分組求和法倒序相加法裂項求和法錯位相加法常見求和方法不等式不等式的性質(zhì)一元二次不等式簡單的線性規(guī)劃基本不等式: eq r(ab) eq f(ab,2)數(shù)列是特殊的函數(shù)借助二次函數(shù)的圖象三個二次的關(guān)系可行域目標(biāo)函數(shù)一次函數(shù):zaxbyz eq f(yb,xa):構(gòu)造斜率z
8、 eq r(xa)2(yb)2):構(gòu)造距離應(yīng)用題幾何意義:z是直線axbyz0在x軸截距的a倍,y軸上截距的b倍.最值問題變形和定值,積最大;積定值,和最小應(yīng)用時注意:一正二定三相等 eq f(2ab,ab) eq r(ab) eq f(ab,2) eq r(f(a2b2,2)第四部分 解析幾何傾斜角和斜率直線的方程位置關(guān)系直線方程的形式傾斜角的變化與斜率的變化重合平行相交垂直A1B2A2B10A1B2A2B10A1A2B1B20點斜式:yy0k(xx0)斜截式:ykxb兩點式: eq f(yy1,y2y1) eq f(xx1,x2x1)截距式: eq f(x,a) eq f(y,b)1一般式
9、:AxByC0注意各種形式的轉(zhuǎn)化和運用范圍.兩直線的交點距離點到線的距離:d eq f(| Ax0By0C |,r(A2B2),平行線間距離:d eq f(| C1C2 |,r(A2B2)圓的方程圓的標(biāo)準(zhǔn)方程圓的一般方程直線與圓的位置關(guān)系兩圓的位置關(guān)系相離相切相交0,或dr0,或dr0,或dr曲線與方程軌跡方程的求法:直接法、定義法、相關(guān)點法圓錐曲線橢圓雙曲線拋物線定義及標(biāo)準(zhǔn)方程性質(zhì)范圍、對稱性、頂點、焦點、長軸(實軸)、短軸(虛軸)、漸近線(雙曲線)、準(zhǔn)線(只要求拋物線)離心率對稱性問題中心對稱軸對稱點(x1,y1) eq o(sdo3(),sup3(關(guān)于點(a,b)對稱)點(2ax1,2b
10、y1)曲線f (x,y) eq o(sdo3(),sup3(關(guān)于點(a,b)對稱)曲線f (2ax,2by) eq blc(aal(Af(x1x2,2)Bf(y1y2,2)C0,f(y2y1,x2x1)(f(A,B)1) 特殊對稱軸xyC0直接代入法截距注意:截距可正、可負(fù),也可為0.點(x1,y1)與點(x2,y2)關(guān)于直線AxByC0對稱第五部分 立體幾何點與線空間點、線、面的位置關(guān)系點在直線上點在直線外點與面點在面內(nèi)點在面外線與線共面直線異面直線相交平行沒有公共點只有一個公共點線與面平行相交有公共點沒有公共點直線在平面外直線在平面內(nèi)面與面平行相交平行關(guān)系的相互轉(zhuǎn)化垂直關(guān)系的相互轉(zhuǎn)化線線平
11、行線面平行面面平行線線垂直線面垂直面面垂直空間的角異面直線所成的角直線與平面所成的角二面角范圍:(0,90范圍:0,90范圍:0,180點到面的距離直線與平面的距離平行平面之間的距離相互之間的轉(zhuǎn)化cos eq o(sup5(|o(a,sup4()o(b,sup4()|),sdo7(|o(a,sup4()|o(b,sup4()|)sin eq o(sup5(|o(a,sup4()o(n,sup4()|),sdo7(|o(a,sup4()|o(n,sup4()|)cos eq o(sup5(o(n1,sup4()o(n2,sup4(),sdo7(|o(n1,sup4()|o(n2,sup4()|)
12、d eq o(sup5(|o(a,sup4()o(n,sup4()|),sdo7(|o(n,sup4()|)空間向量空間直角坐標(biāo)系空間的距離空間幾何體柱體棱柱圓柱正棱柱、長方體、正方體臺體棱臺圓臺錐體棱錐圓錐球三棱錐、四面體、正四面體直觀圖側(cè)面積、表面積三視圖體積長對正高平齊寬相等第六部分 統(tǒng)計與概率統(tǒng)計隨機抽樣抽簽法隨機數(shù)表法簡單隨機抽樣系統(tǒng)抽樣分層抽樣共同特點:抽樣過程中每個個體被抽到的可能性(概率)相等用樣本估計總體樣本頻率分布估計總體總體密度曲線頻率分布表和頻率分布直方圖莖葉圖樣本數(shù)字特征估計總體眾數(shù)、中位數(shù)、平均數(shù)方差、標(biāo)準(zhǔn)差變量間的相關(guān)關(guān)系兩個變量的線性相關(guān)散點圖回歸直線正態(tài)分布列
13、聯(lián)表(22)獨立性分析概率概率的基本性質(zhì)互斥事件對立事件古典概型幾何概型條件概率事件的獨立性用隨機模擬法求概率常用的分布及期望、方差隨機變量兩點分布XB(1,p)E(X)p,D(X)p(1p)二項分布XB(n,p)E(X)np,D(X)np(1p)XH(N,M,n)E(X)n eq f(M,N)D(X) eq f(nM,N) eq b(1f(M,N) eq f(Nn,N1)n次獨立重復(fù)試驗恰好發(fā)生k次的概率為Pn(k) eq Co(sup1(k),sdo1(n) pk(1p)nk超幾何分布若YaXb,則E(Y)aE(X)bD(Y)a2D(X)P(AB)P(A)P(B)P(A)1P(A)P(A
14、B)P(A)P(B)P(B | A) eq f(P(A B),P(A)第七部分 其他部分內(nèi)容合情推理演繹推理歸納類比三段論大前提、小前提、結(jié)論兩個原理分類加法計算原理和分步乘法計算原理排列與組合排列數(shù): eq Ao(sup1(m),sdo1(n) eq f(n!,(nm)!)組合數(shù): eq Co(sup1(m),sdo1(n) eq f(n!,m!(nm)!)性質(zhì) eq Co(sup1(m),sdo1(n) eq Co(sup1(nm),sdo1(n ) eq Co(sup1(m ),sdo1(n1) eq Co(sup1(m),sdo1(n) eq Co(sup1(m1),sdo1(n )計
15、算原理二項式定理通項公式Tr1 eq Co(sup1(r),sdo1(n)anrbr首末兩端“等距離”兩項的二項式系數(shù)相等 eq Co(sup1(0),sdo1(n) eq Co(sup1(2),sdo1(n) eq Co(sup1(4),sdo1(n) eq Co(sup1(1),sdo1(n) eq Co(sup1(3),sdo1(n) eq Co(sup1(5),sdo1(n)2n1 eq Co(sup1(0),sdo1(n) eq Co(sup1(1),sdo1(n) eq Co(sup1(n),sdo1(n)2n二項式系數(shù)性質(zhì)直接證明綜合法分析法由因?qū)Ч麍?zhí)果索因間接證明反證法數(shù)學(xué)歸納法推理證明推理與證明充分非必要條件、必要非充分條件、充要條件關(guān)系條件復(fù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 正裝復(fù)合模裝課程設(shè)計
- 2024年漳州衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫帶答案
- 完善財務(wù)報告的透明度要求計劃
- 商城服務(wù)員工作總結(jié)
- 安防行業(yè)顧問工作總結(jié)
- 分析倉庫工作中的服務(wù)意識計劃
- 2025年中考英語一輪復(fù)習(xí)之主謂一致
- 酒店餐飲話務(wù)員工作總結(jié)
- 數(shù)碼行業(yè)話務(wù)員工作總結(jié)
- 數(shù)碼科技銷售工作總結(jié)
- 氮氣緩沖罐安全操作規(guī)程
- 金工釩鈦科技有限公司-年處理600萬噸低品位釩鈦磁鐵礦選礦項目可行性研究報告
- ncv65系列安裝金盤5發(fā)版說明
- 國能神皖安慶發(fā)電有限責(zé)任公司廠內(nèi)108MW-108MWh儲能項目環(huán)境影響報告表
- 鐵路試驗檢測技術(shù)
- 2023-2024人教版小學(xué)2二年級數(shù)學(xué)下冊(全冊)教案【新教材】
- 小學(xué)奧數(shù)基礎(chǔ)教程(附練習(xí)題和答案)
- 九年級語文上學(xué)期教學(xué)工作總結(jié)
- TWSJD 002-2019 醫(yī)用清洗劑衛(wèi)生要求
- GB/T 7324-2010通用鋰基潤滑脂
- 杭州地鐵一號線工程某盾構(gòu)區(qū)間實施施工組織設(shè)計
評論
0/150
提交評論