下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、淺析信用評(píng)分模型摘要本文對(duì)信用評(píng)分領(lǐng)域中主要的模型和方法做了細(xì)致的概述和優(yōu)缺點(diǎn)比較,這些模型包括判別分析模型、決策樹(shù)分析回歸分析和神經(jīng)網(wǎng)絡(luò)模型。關(guān)鍵詞信用評(píng)分判別分析模型決策樹(shù)分析回歸分析法神經(jīng)網(wǎng)絡(luò)法一、信用評(píng)分概況信用評(píng)分模型作為信用風(fēng)險(xiǎn)管理的基礎(chǔ)和核心,無(wú)論是對(duì)于建立社會(huì)征信體系還是對(duì)于金融機(jī)構(gòu)的信貸資產(chǎn)管理,都有著不可替代的作用。其主要目的,在于盡量將能夠預(yù)測(cè)借款人未來(lái)行為的指標(biāo)加以整合,并統(tǒng)一成可以比較的單一指標(biāo),以顯示借款人在未來(lái)特定時(shí)間內(nèi)違約的可能性,所有的信用評(píng)分模型,無(wú)論采用什么理論或方法,其最終目的都是將貸款申請(qǐng)者的信用級(jí)別分類(lèi)。為達(dá)到分類(lèi)目的。當(dāng)前,對(duì)個(gè)人信用評(píng)分模型的定義
2、有多種,較為權(quán)威的種觀點(diǎn)認(rèn)為:“信用評(píng)分是預(yù)測(cè)貸款申請(qǐng)人或現(xiàn)有借款人違約可能性的一種統(tǒng)計(jì)方法。”這一觀點(diǎn)指出了信用評(píng)分的作用和目的,不過(guò)隨著信用評(píng)分模型的不斷發(fā)展,信用評(píng)分已不僅是一種統(tǒng)計(jì)方法,也包含了運(yùn)籌學(xué),如數(shù)學(xué)規(guī)劃法、非線性模糊數(shù)學(xué)(如神經(jīng)網(wǎng)絡(luò)方法)等。此外,信用評(píng)分的實(shí)際操作應(yīng)用也與決策原則緊密相關(guān),決策原則事實(shí)上決定了信用評(píng)分模型實(shí)現(xiàn)其目的和作用的程度。因此,對(duì)個(gè)人信用評(píng)分模型這一數(shù)學(xué)工具在金融和銀行業(yè)中的應(yīng)用來(lái)說(shuō),較為全面和恰當(dāng)?shù)亩x應(yīng)是,“信用評(píng)分是運(yùn)用數(shù)學(xué)優(yōu)化理論(包括統(tǒng)計(jì)方法、運(yùn)籌方法等),依照即定原則或策略(損失最小原則或風(fēng)險(xiǎn)溢價(jià)原則),在數(shù)據(jù)分析決策階段區(qū)分不同違約率水平
3、客戶(hù)的方法。二、各類(lèi)信用評(píng)分模型概述1.判別分析模型判別分析法是對(duì)研究對(duì)象所屬類(lèi)別進(jìn)行判別的一種統(tǒng)計(jì)分析方法。進(jìn)行判別分析必須已知觀測(cè)對(duì)象的分類(lèi)和若干表明觀測(cè)對(duì)象特征的變量值。判別分析就是要從中篩選出能提供較多信息變量并建立判別函數(shù),使推導(dǎo)出的判別函數(shù)對(duì)觀測(cè)樣本分類(lèi)時(shí)的錯(cuò)判率最小。這種方法的理論基礎(chǔ)是樣本由兩個(gè)分布有顯著差異的子樣本組成,并且它們擁有共同的屬性。它起源于1936年Fisher引進(jìn)的線性判別函數(shù),這個(gè)函數(shù)的目的是尋找一個(gè)變量的組合,把兩個(gè)擁有一些共同特征的組區(qū)分開(kāi)來(lái)。判別分析方法的優(yōu)點(diǎn):適用于二元或多元性目標(biāo)變量,能夠判斷,區(qū)分個(gè)體應(yīng)該屬于多個(gè)不同小組中的哪一組。自身也存在不可避
4、免的缺點(diǎn):該模型假設(shè)前提是自變量的分布都是正態(tài)分布的,而實(shí)踐中的數(shù)據(jù)往往不是完全的正態(tài)分布,從而導(dǎo)致統(tǒng)計(jì)結(jié)果的不可靠性。2.決策樹(shù)方法決策樹(shù)模型是對(duì)總體進(jìn)行連續(xù)的分割,以預(yù)測(cè)一定目標(biāo)變量的結(jié)果的統(tǒng)計(jì)技術(shù)。決策樹(shù)構(gòu)造的輸入是一組帶有類(lèi)別標(biāo)記的例子,構(gòu)造的結(jié)果是一棵二叉或多叉樹(shù)。構(gòu)造決策樹(shù)的方法是采用自上而下的遞歸構(gòu)造。在實(shí)際中,為進(jìn)行個(gè)人信用分析,選取個(gè)人信用作為目標(biāo)屬性,其他屬性作為獨(dú)立變量。所有客戶(hù)被劃分為兩類(lèi),即好客戶(hù)的和壞客戶(hù),將客戶(hù)信用狀況轉(zhuǎn)換為“是否好客戶(hù)”(值為1或0),而后利用數(shù)據(jù)集合來(lái)生成一個(gè)完整的決策樹(shù)。在生成的決策樹(shù)中可以建立一個(gè)規(guī)則基。一個(gè)規(guī)則基包含一組規(guī)則,每一條規(guī)則對(duì)
5、應(yīng)決策樹(shù)的一條不同路徑,這條路徑代表它經(jīng)過(guò)節(jié)點(diǎn)所表示的條件的一條鏈接。通過(guò)創(chuàng)立一個(gè)對(duì)原始祥本進(jìn)行最佳分類(lèi)判別的決策樹(shù),采用遞歸分割方法使期望誤判損失達(dá)到最小。決策樹(shù)模型的優(yōu)點(diǎn):淺層的決策樹(shù)視覺(jué)上非常直觀,容易解釋?zhuān)粚?duì)數(shù)據(jù)的結(jié)構(gòu)和分布不需做任何假設(shè);可以容易地轉(zhuǎn)化成商業(yè)規(guī)則。它的缺點(diǎn)在于:深層的決策樹(shù)視覺(jué)上和解釋上都比較困難;決策樹(shù)對(duì)樣本量的需求比較大;決策樹(shù)容易過(guò)分微調(diào)于樣本數(shù)據(jù)而失去穩(wěn)定性和抗震蕩性。3.回歸分析法回歸分析法是目前為止應(yīng)用最為廣泛的一種信用評(píng)分模型,這其中以著名的logistic回歸為代表。除此之外,線性回歸分析、probit回歸等方法亦屬于此類(lèi)。最早使用回歸分析的Orgler,他采用線性回歸模型制定了一個(gè)類(lèi)似于信用卡的評(píng)分卡,他的研究表明消費(fèi)者行為特征比申請(qǐng)表資料更能夠預(yù)測(cè)未來(lái)違約可能性的大小。同數(shù)學(xué)規(guī)劃方法中一樣,假設(shè)已經(jīng)通過(guò)一定的方法從樣本變量中提取出了若干指標(biāo)作為特征向量,回歸分析的思想就是將這些指標(biāo)變量擬合成為一個(gè)可以預(yù)測(cè)申請(qǐng)者違約率的被解釋變量,自然就是違約率p,回歸分析中應(yīng)用最廣泛的模型當(dāng)屬線性回歸模型,它是對(duì)大量的數(shù)據(jù)點(diǎn)中表現(xiàn)出來(lái)的數(shù)量關(guān)系模擬出一條直線,回歸分析的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年湖北客運(yùn)從業(yè)資格證能開(kāi)什么車(chē)
- 2024年度智能制造LED指示燈采購(gòu)合同
- 2024年建筑外墻亮化工程勞務(wù)合同
- 人教部編版六年級(jí)語(yǔ)文上冊(cè)《語(yǔ)文園地三》精美課件
- 習(xí)作我和-過(guò)一天說(shuō)課稿
- 道路信號(hào)燈維護(hù)服務(wù)方案
- 六年級(jí)勞動(dòng)教育《做蛋糕》備課說(shuō)課稿
- 2024年式精裝倉(cāng)庫(kù)租賃合同范本
- 2024年建筑項(xiàng)目維護(hù)保養(yǎng)合同
- 2024年度八寶山殯儀館鮮花制品采購(gòu)合同的簽署與生效合同
- 2024年全國(guó)統(tǒng)考“營(yíng)養(yǎng)師或營(yíng)養(yǎng)指導(dǎo)員”相關(guān)知識(shí)考前試題庫(kù)與參考答案
- 2024CSCO結(jié)直腸癌診療指南解讀
- (正式版)QBT 2174-2024 不銹鋼廚具
- 監(jiān)控維修施工方案
- 是誰(shuí)殺死了周日
- 國(guó)家開(kāi)放大學(xué)《管理英語(yǔ)4》章節(jié)測(cè)試參考答案
- 事故安全培訓(xùn)案例(一)
- 考題六年級(jí)數(shù)學(xué)上冊(cè)看圖列方程計(jì)算專(zhuān)項(xiàng)北師大版
- 高壓線遷移施工方案
- 培智學(xué)校的心理健康教育模式探索
- 《數(shù)學(xué)家的故事》讀后感(7篇)
評(píng)論
0/150
提交評(píng)論