版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、課題用平方差公式因式分解 教學設計及反思人教版義務教育課程標準實驗教科書八年級數(shù)學上冊第十五章第四 節(jié)因式分解第二課時“用平方差公式因式分解”作者及工作單位閆文運唐山市豐南區(qū)黃各莊中心校指導思想與理論依據(jù)(1)以學生討論為主,將觀察、思考、討論貫穿于整個教學環(huán)節(jié)之中,讓學生自主探索、合作交流, 意識到與同伴合作的重要性。力求體現(xiàn)課堂教學的主體性、合作性、互補性。(2)教師要有組織、有目的、有針對性的引導學生并參與到學習活動中,鼓勵學生采用自主學習、合 作交流的學習方式,培養(yǎng)學生善于觀察、發(fā)現(xiàn)、比較、總結的習慣與能力,使學生真正成為學習的主人。教材分析因式分解是多項式因式分解一部分中最基本的知識
2、和基本方法。本節(jié)課是在學習提公因式法分解因式后 公式法的第一課時用平方差公式分解因式,通過本節(jié)課的學習,不僅使學生理解用平方差公式分解因式 的意義,掌握公式的特點,并能熟練的運用平方差公式和提公因式法將多項式進行分解因式,而且又為下節(jié) 課學習用完全平方公式分解因式作好了充分的準備,起著承上啟下的作用。因式分解是代數(shù)式的一種重要恒 等變形,它是學習分式的基礎,又在代數(shù)式的運算、解方程、函數(shù)中有廣泛的應用,所以學好本節(jié)課非常關 鍵。學情分析(1)知識掌握上,在整式乘法中學生已經(jīng)熟練的運用了平方差公式,對于新知學生并不陌生,把乘法 公式反過來,很輕松的投入新知的探究中。(2)學生學習本節(jié)課的知識障礙
3、。多項式具有什么特征時,可以用平方差公式分解因式;對于負號的 處理;分解是否徹底,學生會出現(xiàn)困難。這就要求教師利用講學稿設計有價值的問題讓學生弄清平方差公式 的形式和特點,熟練的掌握公式。教學目標知識目標:掌握用平方差公式分解因式的方法。掌握提公因式法、平方差公式法分解因式的綜合運用。能力目標:培養(yǎng)分工協(xié)作及合作能力,鍛煉學生的語言表達及用數(shù)學語言的能力。培養(yǎng)學生觀察、分析、歸納的能力,并向學生滲透對比、類比的數(shù)學思想方法。情感目標:培養(yǎng)學生積極主動參與的意識,使學生形成自主學習、合作學習的良好的學習習慣。教學重點和難點重點:1.對運用平方差公式分解因式的理解及應用,關鍵是“認清結構,找準 a
4、、b”.2.培養(yǎng)學生的觀察、歸納能力,進一步了解換元的思想方法. 難點:靈活應用公式法和提公因式法分解因式,并理解因式分解的要求.教學流程示意(一)學前準備(學生預習感悟,教師檢查分析)(二)自主探究(學生自主探究,師生交流互動)(三)學以致用(學生展示成果,教師巡視指導)(四)整理歸納(梳理知識方法,教師總結提高)(五)超市作業(yè)(學生獨立完成,分層達標)教學過程教學環(huán)節(jié)教師活動預設學生行為設計意圖(一)學前準備1.填空:(1)(1)4x =( ) (2)4/9x =( )(3)0.16a =( )(4)9/49x y=( ) 2、把下列各式因式分解: (1) ax ay=(2) 9a2 -
5、6ab+3a=(3) 3a(a+b)-5(a+b)=因式分解是把一個多項式化成 幾個整式的_的形式,即和差化 _,因式分解與整式乘法的過程 _3.運用平方差公式計算: (1)(x+2)(x-2)= _(2)(3x+2y)(3x-2y)=( ) 2-( ) 2 =_把上面的兩個式子反過來:(1) _=(x+2)(x-2)(2) _ =( ) 2-1填空題的作用 在于訓練學生迅速地 把一個單項式寫成平 方的形式也可以對積本環(huán)節(jié)提前讓教師在課前 的乘方、冪的乘方運算 批改,對學生的預習進行總結 法則給予一定時間的 檢查學生預習情況,做到心中 復習,避免出現(xiàn) 4x2= 有數(shù)。 學生預習,課前 (4x)
6、2 這一類錯誤。完成,讓學生觀察、 2.對用提公因式因 比較 3 題式子互逆。式分解進行復習,再次引入本節(jié)課所學內(nèi)容,板書課 理解因式分解的特點。 題。3用式子互逆引 入為本節(jié)課內(nèi)容,很容 易把學生帶入新知的 探究中。學生在學前準 本環(huán)節(jié)利用講學( )2=(3x+2y)(3x-2y)備 3 的基礎上觀察、稿中問題的精心設計,左邊是_形式,右邊是 _形式,符合因式分解的特點。4 疑難摘要:_ (二)自主探究、合作交流交流探究出可逆用 指導自學。教師要組織 整式乘法的平方差 引導學生依據(jù)問題,在 公式進行因式分解,自學過程中動口、動 輕松應戰(zhàn)。 手、動腦,尋求解答問活動 1教師深入小組,傾聽學生題
7、的方法。1. 你能將下列多項式分解因的式交流,引導學生觀察這兩個嗎?多項式的特點。這兩個多項式有什么共同的特點? 教師板書: 你的依據(jù)是什么? 將(1)x4 (a+b)(a-b) = a-b通過活動 1 問題的設置,(2)y25反過來就得到分解因式學生經(jīng)歷觀察、類比、特點:這兩個多項式都可以寫成平是方差公式:兩個數(shù)的_的形式,依據(jù) a-b= (a+b)(a-b) _公式來分解因式。 即兩個數(shù)的平方差等于這兩整式乘法公式中的平方差公式 數(shù)的和與這兩個數(shù)的差的積。 是_反過來_即兩個數(shù)的平方差等于_形式和特點:公式的左邊是兩個數(shù)的_差的形式;歸納的過程,探究出逆 用整式乘法的平方差 公式可以解決問
8、題。發(fā) 展學生的逆向思維,培 養(yǎng)學生有條理的思考 問題。通過觀察與平方差公式的 結構類似的幾個變式,檢 測、鞏固用平方差公式進右邊是這兩個數(shù)的_與這兩 個數(shù)的_的_?;顒?21、下列多項式可不可以用平方差公式?如果可以,應分解成什么式子?如 果不可以,說明為什么? x2+y2 x2y2再次說明整式乘法 與分解因式的互逆 關系以及用平方差 公式進行因式分解 形式和特點。以小組為單位先獨立因式分解的條件,加深印 完成用搶答的形式 象,為匯報 為后面的例題和練習作準備。 -x2+y2 -x2y22、議一議:通過上面體會什么樣的多項式可以利用平方差公式進行 因式分解? 請與你的同伴討論,交流.(1)多
9、項式是_項式(2)每一項都可以寫成數(shù)或式_ 的形式(3)兩項的符號_,一_ 一_即 eq oac(,:)2 eq oac(,2) eq oac(, )=( eq oac(,+) eq oac(, ) eq oac(,)()活動 3例 1 對下列多項式分解因式:教師活動 3 的過程(1)4x29;中說明解:原式=( )2( )2 =(_ + _)(_)1、用平方差公式進 行因式分解的關 鍵是: “認清結構,學生以小組的形本式環(huán)節(jié)用探索性的數(shù)學 進行自學、交流。對問于題,以此提供合作、 (x+p)2(x+q)2 讓一名交學流、自主探索的機會。(2)(x+p)2(x+q)2找準 a、b生板演并分析,
10、教師用根獎勵小組星的方式,調(diào) 把(x+p)和(x+q)看作一個整情況給予團 學生的學習積極性。進一 結合作星, 并說鞏明固用平方差公式進行因體元思想。 式分解,培養(yǎng)學生符 號運解:2、算能原式=(_ )+(_)(_) a2-b2=(a+b)(a-)(a-b)中的 a、b力。在此體現(xiàn)本節(jié)課的(_)可以是一個數(shù)、=( )( ) 一個單項式也可以是一個多重點。=( )( ) 式 試一試( 1)分解因式(1) a - 4/9b(2) (2x + y) - (x +y)注意:1、用平方差公式進行 因式分解的關鍵是: “認清結構,找 準 a、b”.試一試(1)題目學生板演,集體訂正。2、a2-b2=(a+
11、b)(a-b)中的 a、b可以是一個數(shù)、一個單項式也可以 是一個多項式?;顒?4 例 2 分解因式教師根據(jù)學生的情 況給予評價。并強學生組內(nèi)圍繞問題 交流、討論,由四 個分別出一位代表 活動 4(1)x4y4;調(diào)分解因式時要注板演。另外四個小 充分體現(xiàn)以學生為主(2)a3bab思考:1.如何處理中 4 次的二項 式,你的結果是否不能再分解?2. 是否能直接運用平方差 公式試一試( 2)分解因式意的問題組給予判斷。 體,培養(yǎng)學生的合作意識。第(1)小題 讓學生探究出用冪的 乘方的逆運算將 4 次 指數(shù)降為 2 次指數(shù),(1) a481;轉化成兩數(shù)的平方差(2)4 x3y9xy3總結:1、分解因式
12、,必須進 行到每一個多項式都不能 _為止。2、注意:若有公因式則先提 _,然后再看能否用公式法。三、 學以致用(1)1 25x(2)-9x +y(3) 4a - 16b(4)( a + b) - (a + c)教師巡視指導。第 (2)、(4)小題可采 用不同的方法,教師 根據(jù)情況給予巧思創(chuàng) 新星。的形式。并且由此題 強調(diào)分解因式,必須 進行到每一個多項式 都不能再分解為止突 破本節(jié)課的一個難點。 第(2)小題將提公 因式分解因式與用平 方差公式因式分解有 機的結合,體現(xiàn)新舊學生獨立完成,展示自 知識的聯(lián)系。己的成果帶的選做本環(huán)節(jié)要求學生先獨 立完成,體驗成功的(5)4( a + b) - 25
13、(a - c) 2.用簡便方法計算教師要給予綜合歸類,選擇具有 普遍性和關鍵性的問題加以強調(diào)。喜悅。并且根據(jù)其他 同學的展示,學習好(1)1001 - 999 (2)99.5 - 100.5的方法,更熟練、更學生以小組中心發(fā)言人 準確的掌握用平方差的身份進行匯報公式分解因式,提高 自己的綜合能力。 用獎勵星的方法鼓勵四、整理歸納:小組推薦一位代表,談談他們 一組在學習中遇到的問題,以及本 節(jié)課所要掌握的知識。學生從不同角度思考 問題,尋求最佳答案。對本節(jié)課的內(nèi)容進行 梳理,反思,將知識 系統(tǒng)化。五、作業(yè)超市帶的選做1.選擇題:設置由淺人深、由-4a +1 分解因式的結果應是 ( )易到難的習題
14、,讓不同A -(4a+1)(4a-1) B. (1+2a ) ( 1-2a )層次的學生都能 “各C. -(2a+1)(2a+1) D. (2a+1) (2a-1)取所需”地選擇練習,若 a、b、c 是三角形的三邊長且滿足(a+b) -(a+c) =0,則此三角形是( )既保證低層次學生達A、等腰三角形 B、等邊三角形 C、直角三角形 D、不能確定到學習目標的要求,體2.分解因式:會到成功的愉快,又使 -9x+16 ( m+ n) - n高層次的學生學有創(chuàng)9/25xy-1/4xy3 x2+mxm;見,有用武之地。 分解因式: ( x-y)a +(y - x)b3.計算:100-99+98-97
15、+96-95+2-1板書設計用平方差公式分解因式:整式乘法a - b = (a+b)(a-b)注意:因式分解1、有公因式時先提公因式,后考慮公式。2、分解因式要徹底即:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積教學反思本節(jié)課是提公因式法分解因式后公式法的第一課時用平方差公式分解因式,它是整式乘法的平方差 公式的逆用,它是解高次方程的基礎,有重要的地位。(1) 本解課在學生課前投入的基礎上,通過對平方差公式的復習,把公式的左右兩邊互換式子的特點,自 引入新課。學生嘗試對 x4 和 y 25 分解因式,通過觀察、交流探究出逆用整式乘法的平方差公式的 以解決問題。然后通過判斷是否能用平方差公式分解因式和例題的分析以及試一試,讓學生在小組合作中掌握平方 公式分解因式的形式和特點,強調(diào)要注意的問題,靈活應用公式法和提公因式法分解因式。接著在學以致用環(huán)節(jié)讓學生先獨立完成,力求自行解決,避免只強調(diào)交流的過程。設置由淺人深、由易 到難的練習題目,讓不同層次的學生都能 “各取所需”地選擇練習。在整理歸納環(huán)節(jié)讓學生以小組為單位 推薦一位代表,談談本組在學習中遇到的問題,以及本節(jié)課所要掌握的知識。在這要求教師吃透教材,駕馭 課堂,對學生練習所反饋的疑難問題,教師要給予綜合歸類,選擇具有普遍性和關鍵性的問題。最后的作業(yè) 也要分層次,讓不同的學生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年保健品企業(yè)合作聯(lián)盟合同
- 2024年農(nóng)副產(chǎn)品批發(fā)銷售合同
- 2024年工程合同管理招投標全解析
- 2024年勞務派遣與合同工作品互惠協(xié)議
- (2024版)生物醫(yī)藥領域研發(fā)合作與技術轉讓合同
- 2024設備買賣合同范本范文
- 2024年廣告制作服務全面合同
- 2(2024版)區(qū)塊鏈技術應用平臺建設合同
- 2024年城市軌道交通設備購買及維護合同
- 2(2024版)水泵用于油田注水合同
- 醫(yī)院電氣安全知識培訓
- 上海市虹口區(qū)2024學年第一學期期中考試初三物理試卷-教師版
- 病理學實驗2024(臨床 口腔)學習通超星期末考試答案章節(jié)答案2024年
- 半期評估試卷(1-4單元)-2024-2025學年四年級上冊數(shù)學北師大版
- 門診導診課件
- python程序設計-說課
- 2024年河北廊坊開發(fā)區(qū)管理委員招聘筆試參考題庫附帶答案詳解
- 化肥農(nóng)藥減量增效問卷調(diào)查表
- XX學校推廣應用“國家中小學智慧教育平臺”工作實施方案
- 養(yǎng)老院老人入院風險告知書4篇
- 220KV線路運維實施方案
評論
0/150
提交評論