2021-2022學(xué)年內(nèi)蒙古赤峰市赤峰高考臨考沖刺數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年內(nèi)蒙古赤峰市赤峰高考臨考沖刺數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年內(nèi)蒙古赤峰市赤峰高考臨考沖刺數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年內(nèi)蒙古赤峰市赤峰高考臨考沖刺數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年內(nèi)蒙古赤峰市赤峰高考臨考沖刺數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知不重合的平面 和直線 ,則“ ”的充分不必要條件是( )A內(nèi)有無數(shù)條直線與平行B 且C 且D內(nèi)的任何直線都與平

2、行2已知雙曲線的離心率為,拋物線的焦點坐標(biāo)為,若,則雙曲線的漸近線方程為( )ABCD3復(fù)數(shù)滿足,則復(fù)數(shù)等于()ABC2D-24已知雙曲線:的左右焦點分別為,為雙曲線上一點,為雙曲線C漸近線上一點,均位于第一象限,且,則雙曲線的離心率為( )ABCD5若復(fù)數(shù)是純虛數(shù),則( )A3B5CD6已知直線和平面,若,則“”是“”的( )A充分不必要條件B必要不充分條件C充分必要條件D不充分不必要7已知角的終邊經(jīng)過點,則ABCD8執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是( )ABCD9已知集合,則( )ABCD10已知集合,集合,若,則( )ABCD11在中,內(nèi)角所對

3、的邊分別為,若依次成等差數(shù)列,則( )A依次成等差數(shù)列B依次成等差數(shù)列C依次成等差數(shù)列D依次成等差數(shù)列12若直線與圓相交所得弦長為,則( )A1B2CD3二、填空題:本題共4小題,每小題5分,共20分。13設(shè)滿足約束條件且的最小值為7,則_.14已知平面向量,且,則向量與的夾角的大小為_15,則f(f(2)的值為_16已知拋物線的焦點和橢圓的右焦點重合,直線過拋物線的焦點與拋物線交于、兩點和橢圓交于、兩點,為拋物線準(zhǔn)線上一動點,滿足,當(dāng)面積最大時,直線的方程為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)

4、文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關(guān)于年份代號的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關(guān)).年份年份代號年利潤(單位:億元)()求關(guān)于的線性回歸方程,并預(yù)測該公司年(年份代號記為)的年利潤;()當(dāng)統(tǒng)計表中某年年利潤的實際值大于由()中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將()中預(yù)測的該公司年的年利潤視作該年利潤的實際值,現(xiàn)從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.18(12分)如圖,已知四棱錐,底面為邊長為2的菱形,平面,是

5、的中點,() 證明:;() 若為上的動點,求與平面所成最大角的正切值19(12分)已知曲線的參數(shù)方程為 為參數(shù)),以直角坐標(biāo)系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點到直線的最大距離.20(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.21(12分)已知函數(shù),(1)當(dāng)時,求不等式的解集; (2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值22(10分)如圖,在直三

6、棱柱ABCA1B1C1中,ABC90,ABAA1,M,N分別是AC,B1C1的中點求證:(1)MN平面ABB1A1;(2)ANA1B參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A. 內(nèi)有無數(shù)條直線與平行,則相交或,排除;B. 且,故,當(dāng),不能得到 且,滿足;C. 且,則相交或,排除;D. 內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系

7、,意在考查學(xué)生的綜合應(yīng)用能力.2A【解析】求出拋物線的焦點坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程【詳解】拋物線y22px(p0)的焦點坐標(biāo)為(1,0),則p2,又ep,所以e2,可得c24a2a2+b2,可得:ba,所以雙曲線的漸近線方程為:y故選:A【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用3B【解析】通過復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復(fù)數(shù)滿足,故選B.【點睛】本題主要考查復(fù)數(shù)的基本運算,復(fù)數(shù)模長的概念,屬于基礎(chǔ)題4D【解析】 由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸

8、近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D點睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍)5C【解析】先由已知,求出,進一步可得,再利用復(fù)數(shù)模的運算即可【詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.【點睛】本題考查復(fù)數(shù)的除法、復(fù)數(shù)模的運算,

9、考查學(xué)生的運算能力,是一道基礎(chǔ)題.6B【解析】由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,當(dāng)時,存在,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.7D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D8B【解析】根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)

10、循環(huán);第六步:,此時要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于常考題型.9B【解析】計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學(xué)生的計算能力.10A【解析】根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當(dāng)時,不符合題意,當(dāng)時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎(chǔ)題.11C【解析】由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列, 正弦定理得,由余

11、弦定理得 ,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題. 解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到12A【解析】將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.二、填空題:本題共4

12、小題,每小題5分,共20分。133【解析】根據(jù)約束條件畫出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對參數(shù)a分類討論,當(dāng)時顯然不滿足題意;當(dāng)時,直線經(jīng)過可行域中的點A時,截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時,的截距沒有最小值,即z沒有最小值;當(dāng)時,的截距沒有最大值,即z沒有最小值,綜上可得出結(jié)果.【詳解】根據(jù)約束條件畫出可行域如下:由,可得出交點,由可得,當(dāng)時顯然不滿足題意;當(dāng)即時,由可行域可知當(dāng)直線經(jīng)過可行域中的點A時,截距最小,即z有最小值,即,解得或(舍);當(dāng)即時,由可行域可知的截距沒有最小值,即z沒有最小值;當(dāng)即時,根據(jù)可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時

13、.故答案為:3.【點睛】本題主要考查線性規(guī)劃問題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對參數(shù)進行討論.14【解析】由,解得,進而求出,即可得出結(jié)果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎(chǔ)知識;考查運算求解能力,屬于基礎(chǔ)題151【解析】先求f(1),再根據(jù)f(1)值所在區(qū)間求f(f(1).【詳解】由題意,f(1)=log3(111)=1,故f(f(1)=f(1)=1e11=1,故答案為:1【點睛】本題考查分段函數(shù)求值,考查對應(yīng)性以及基本求解能力.16【解析】根據(jù)均值不等式得到,根據(jù)等號成立條件得到直線的

14、傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,(當(dāng)且僅當(dāng),等號成立),直線的傾斜角為,直線的方程為.故答案為:.【點睛】本題考查了拋物線,橢圓,直線的綜合應(yīng)用,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(),該公司年年利潤的預(yù)測值為億元;().【解析】()求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進而可求得關(guān)于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計值;()利用()中的回歸直線方程計算出從年至年這年被評為級利潤年的年數(shù),然后利用組合計數(shù)原理結(jié)合古典概型的概率可得出所求事件的概率.【詳解】

15、()根據(jù)表中數(shù)據(jù),計算可得,又,關(guān)于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預(yù)測值為億元.()由()可知年至年的年利潤的估計值分別為、(單位:億元),其中實際利潤大于相應(yīng)估計值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機抽取年,恰有年為級利潤年”的概率為,.【點睛】本題考查利用最小二乘法求回歸直線方程,同時也考查了古典概型概率的計算,涉及組合計數(shù)原理的應(yīng)用,考查計算能力,屬于中等題.18()見解析;().【解析】試題分析:()由底面為邊長為2的菱形,平面,易證平面,可得;()連結(jié),由()易知為與平面所成的角,在中,可求得.試題解

16、析:() 四邊形為菱形,且,為正三角形,又為中點,;又,平面,又平面,平面,又平面,;()連結(jié),由()知平面,為與平面所成的角,在中,最大當(dāng)且僅當(dāng)最短,即時最大,依題意,此時,在中,與平面所成最大角的正切值為考點:1.線線垂直證明;2.求線面角.19(1),表示圓心為,半徑為的圓;(2)【解析】(1)根據(jù)參數(shù)得到直角坐標(biāo)系方程,再轉(zhuǎn)化為極坐標(biāo)方程得到答案.(2)直線方程為,計算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點到直線的最大距離為.【點睛】本題考查了參數(shù)方程,極坐標(biāo)方程,直線和圓的距離的最值,

17、意在考查學(xué)生的計算能力和應(yīng)用能力.20 (1) 曲線表示的是焦點為,準(zhǔn)線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標(biāo)方程為兩邊同時乘以,利用極坐標(biāo)與直角坐標(biāo)之間的關(guān)系即可得出其直角坐標(biāo)方程;(2)由直線經(jīng)過點,可得的值,再將直線的參數(shù)方程代入曲線的標(biāo)準(zhǔn)方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即, 曲線表示的是焦點為,準(zhǔn)線為的拋物線. (2)將代入,得, , , ,直線的參數(shù)方程為 (為參數(shù)).將直線的參數(shù)方程代入得,由直線參數(shù)方程的幾何意義可知,. 21(1) (2)【解析】(1)當(dāng)時,由可得,(所以,解得,所以不等式的解集為 (2)由題可得,因為函數(shù)的圖象與軸恰好圍成一個直角三角形,所以,解得,當(dāng)時,函數(shù)的圖象與軸沒有交點,不符

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論