版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知數(shù)列對任意的有成立,若,則等于( )ABCD2設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為( )ABCD13若不等式在區(qū)間內(nèi)的解集中有且僅
2、有三個整數(shù),則實數(shù)的取值范圍是( )ABCD4若是定義域為的奇函數(shù),且,則A的值域為B為周期函數(shù),且6為其一個周期C的圖像關于對稱D函數(shù)的零點有無窮多個5在明代程大位所著的算法統(tǒng)宗中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣馬吃了牛的一半,羊吃了馬的一半”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同馬吃的青苗是牛的一半,羊吃的青苗是馬的一半問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食
3、?( )ABCD6已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為( )A2kB4kC4D27設命題函數(shù)在上遞增,命題在中,下列為真命題的是( )ABCD8在中,則邊上的高為( )AB2CD9已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為( )ABCD10的展開式中含的項的系數(shù)為( )AB60C70D8011定義,已知函數(shù),則函數(shù)的最小值為( )ABCD12設,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13設的內(nèi)角的對邊分別為,若,則_14已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_15設,則除以的余數(shù)是_.16如圖所
4、示,邊長為1的正三角形中,點,分別在線段,上,將沿線段進行翻折,得到右圖所示的圖形,翻折后的點在線段上,則線段的最小值為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四棱錐中,底面是直角梯形且,側面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大??;(2)若,且直線與平面所成角為,求的值.18(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:)有關如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于
5、區(qū)間20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫10,15)15,20)20,25)25,30)30,35)35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率19(12分)已知六面體如圖所示,平面,是棱上的點,且滿足.(1)求證:直線平面;(2)求二面
6、角的正弦值.20(12分)若函數(shù)在處有極值,且,則稱為函數(shù)的“F點”.(1)設函數(shù)().當時,求函數(shù)的極值;若函數(shù)存在“F點”,求k的值;(2)已知函數(shù)(a,b,)存在兩個不相等的“F點”,且,求a的取值范圍.21(12分)設函數(shù).(1)解不等式;(2)記的最大值為,若實數(shù)、滿足,求證:.22(10分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有, ,兩邊同時相加得,又
7、因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.2C【解析】試題分析:設,由題意,顯然時不符合題意,故,則,可得:,當且僅當時取等號,故選C考點:1拋物線的簡單幾何性質(zhì);2均值不等式【方法點晴】本題主要考查的是向量在解析幾何中的應用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題3C【解析】由題可知,設函數(shù),根據(jù)導數(shù)求出的極值點,得出單調(diào)性,根據(jù)在
8、區(qū)間內(nèi)的解集中有且僅有三個整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個整數(shù),結合圖象,可求出實數(shù)的取值范圍.【詳解】設函數(shù),因為,所以,或,因為 時,或時,其圖象如下:當時,至多一個整數(shù)根;當時,在內(nèi)的解集中僅有三個整數(shù),只需,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時考查數(shù)形結合思想和解題能力.4D【解析】運用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達式判斷即可.【詳解】是定義域為的奇函數(shù),則,又,即是以4為周期的函數(shù),所以函數(shù)的零點有無窮多個;因為,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了
9、函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運用數(shù)學式子判斷得出結論是關鍵.5D【解析】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數(shù)列,結合等比數(shù)列的性質(zhì)可求出答案.【詳解】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數(shù)列,且公比,則,故,.故選:D.【點睛】本題考查數(shù)列與數(shù)學文化,考查了等比數(shù)列的性質(zhì),考查了學生的運算求解能力,屬于基礎題.6D【解析】分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當時,等式不是雙曲線的方程;當時,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.7C【解
10、析】命題:函數(shù)在上單調(diào)遞減,即可判斷出真假命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假【詳解】解:命題:函數(shù),所以,當時,即函數(shù)在上單調(diào)遞減,因此是假命題命題:在中,在上單調(diào)遞減,所以,是真命題則下列命題為真命題的是故選:C【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題8C【解析】結合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角
11、形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.9B【解析】根據(jù)焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】雙曲線與的漸近線相同,且焦點在軸上,可設雙曲線的方程為,一個焦點為,故的標準方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.10B【解析】展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,所以的展開式中含的項的系數(shù)為故選:B【點睛】本題考查了二項式系數(shù)的求解,
12、考查了學生綜合分析,數(shù)學運算的能力,屬于基礎題.11A【解析】根據(jù)分段函數(shù)的定義得,則,再根據(jù)基本不等式構造出相應的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,則,(當且僅當,即時“”成立.此時,,的最小值為,故選:A.【點睛】本題考查求分段函數(shù)的最值,關鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.12D【解析】結合指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,可判斷出,即可選出答案.【詳解】由,即,又,即,即,所以.故選:D.【點睛】本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13或【解析】試題分析
13、:由,則可運用同角三角函數(shù)的平方關系:,已知兩邊及其對角,求角用正弦定理;,則;可得考點:運用正弦定理解三角形(注意多解的情況判斷)140或6【解析】計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關系求參數(shù),意在考查學生的計算能力和轉(zhuǎn)化能力。151【解析】利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【詳解】,因展開式中后面10項均有88這個因式,所以除以的余數(shù)為1.故答案為:1【點睛】本題考查二項式定理的綜合應用,涉及余數(shù)的問題,解決此類問題
14、的關鍵是靈活構造二項式,并將它展開分析,本題是一道基礎題.16【解析】設,在中利用正弦定理得出關于的函數(shù),從而可得的最小值【詳解】解:設,則,在中,由正弦定理可得,即,當即時,取得最小值故答案為【點睛】本題考查正弦定理解三角形的應用,屬中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結.因為,所以.因為,所以.因為側面為等邊三角形,所以又因為平面平面,平面平面,
15、平面,所以平面,所以兩兩垂直. 以為空間坐標系的原點,分別以所在直線為軸建立如圖所示的空間直角坐標系,因為,則,.設平面的法向量為,則,即.取,則,所以.又為平面的法向量,設平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線與平面所成角為,所以,即,即,化簡得,所以,符合題意.【點睛】本題考查利用向量坐標法求面面角、線面角,涉及到面面垂直的性質(zhì)定理的應用,做好此類題的關鍵是準確寫出點的坐標,是一道中檔題.18(1)(2)【解析】(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間20,25)和最高氣溫低于20的天
16、數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率(2)當溫度大于等于25時,需求量為500,求出Y900元;當溫度在20,25)時,需求量為300,求出Y300元;當溫度低于20時,需求量為200,求出Y100元,從而當溫度大于等于20時,Y0,由此能估計估計Y大于零的概率【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間20,25)和最高氣溫低于20的天數(shù)為2+16+3654,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:)有關如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間20,25),需求量為300瓶,如果最高氣溫低于20,需求量為20
17、0瓶,六月份這種酸奶一天的需求量不超過300瓶的概率p(2)當溫度大于等于25時,需求量為500,Y4502900元,當溫度在20,25)時,需求量為300,Y3002(450300)2300元,當溫度低于20時,需求量為200,Y400(450200)2100元,當溫度大于等于20時,Y0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當溫度大于等于20的天數(shù)有:90(2+16)72,估計Y大于零的概率P【點睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結合思想、化歸與轉(zhuǎn)化思想,是中檔題19(1)證明見解析(2
18、)【解析】(1)連接,設,連接.通過證明,證得直線平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的正弦值.【詳解】(1)連接,設,連接,因為,所以,所以,在中,因為,所以,且平面,故平面.(2)因為,所以,因為,平面,所以平面,所以,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標系,由已知可得,所以,因為,所以,所以點的坐標為,所以,設為平面的法向量,則,令,解得,所以,即為平面的一個法向量.,同理可求得平面的一個法向量為所以所以二面角的正弦值為【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.
19、20(1)極小值為1,無極大值.實數(shù)k的值為1.(2)【解析】(1)將代入可得,求導討論函數(shù)單調(diào)性,即得極值;設是函數(shù)的一個“F點”(),即是的零點,那么由導數(shù)可知,且,可得,根據(jù)可得,設,由的單調(diào)性可得,即得.(2)方法一:先求的導數(shù),存在兩個不相等的“F點”,可以由和韋達定理表示出,的關系,再由,可得的關系式,根據(jù)已知解即得.方法二:由函數(shù)存在不相等的兩個“F點”和,可知,是關于x的方程組的兩個相異實數(shù)根,由得,分兩種情況:是函數(shù)一個“F點”,不是函數(shù)一個“F點”,進行討論即得.【詳解】解:(1)當時, (),則有(),令得,列表如下:x10極小值故函數(shù)在處取得極小值,極小值為1,無極大值.設是函數(shù)的一個“F點”().(),是函數(shù)的零點.,由,得,由,得,即.設,則,所以函數(shù)在上單調(diào)增,注意到,所以方程存在唯一實根1,所以,得,根據(jù)知,時,是函數(shù)的極小值點,所以1是函數(shù)的“F點”.綜上,得實數(shù)k的值為1.(2)由(a,b,),可得().又函數(shù)存在不相等的兩個“F點”和,是關于x的方程()的兩個相異實數(shù)根.又,即,從而,即.,解得.所以,實數(shù)a的取值范圍為.(2)(解法2)因為( a,b,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國金融風控服務行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國擋圈行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國自動細胞分析儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 二零二四年物流企業(yè)駕駛員安全駕駛責任合同2篇
- 二零二五年度大米加工企業(yè)能源消耗監(jiān)測與節(jié)能合同4篇
- 書店裝修延期補充協(xié)議
- 書店裝修合同及條款
- 雜志社改造拆除協(xié)議樣本
- 2025財務部上半年財務分析報告總結范文
- 2021-2026年中國芪膠升白膠囊行業(yè)發(fā)展趨勢預測及投資戰(zhàn)略規(guī)劃分析報告
- 人教版小學數(shù)學(2024)一年級下冊第一單元 認識平面圖形綜合素養(yǎng)測評 B卷(含答案)
- 2025年國家公安部直屬事業(yè)單位招錄人民警察及工作人員696人高頻重點提升(共500題)附帶答案詳解
- 企業(yè)年會攝影服務合同
- 商務服務業(yè)的市場細分和定位策略
- 財政學論文我國財政支出存在的問題及改革建議
- 2022年湖南高速鐵路職業(yè)技術學院單招數(shù)學模擬試題及答案解析
- 小學生必備古詩
- 手術室護理實踐指南2023年
- 移動商務內(nèi)容運營(吳洪貴)任務六 結合熱度事件的內(nèi)容傳播
- 新人教版六年級下冊數(shù)學全冊課件
- 江蘇對口單招英語考綱詞匯總結
評論
0/150
提交評論